Objective: To explore predictors of dropout of patients with chronic musculoskeletal pain from an interdisciplinary chronic pain management programme, and to develop and validate a multivariable prediction model, based on the Extended Common-Sense Model of Self-Regulation (E-CSM).
Methods: In this prospective cohort study consecutive patients with chronic pain were recruited and followed up (July 2013 to May 2015). Possible associations between predictors and dropout were explored by univariate logistic regression analyses. Subsequently, multiple logistic regression analyses were executed to determine the model that best predicted dropout.
Results: Of 188 patients who initiated treatment, 35 (19%) were classified as dropouts. The mean age of the dropout group was 47.9 years (standard devition 9.9). Based on the univariate logistic regression analyses 7 predictors of the 18 potential predictors for dropout were eligible for entry into the multiple logistic regression analyses. Finally, only pain catastrophizing was identified as a significant predictor.
Conclusion: Patients with chronic pain who catastrophize were more prone to dropout from this -chronic pain management programme. However, due to the exploratory nature of this study no firm conclusions can be drawn about the predictive value of the E-CSM of Self-Regulation for dropout.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2340/16501977-2609 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!