Mixed lead-tin halide perovskites have sufficiently low bandgaps (∼1.2 eV) to be promising absorbers for perovskite-perovskite tandem solar cells. Previous reports on lead-tin perovskites have typically shown poor optoelectronic properties compared to neat lead counterparts: short photoluminescence lifetimes (<100 ns) and low photoluminescence quantum efficiencies (<1%). Here, we obtain films with carrier lifetimes exceeding 1 μs and, through addition of small quantities of zinc iodide to the precursor solutions, photoluminescence quantum efficiencies under solar illumination intensities of 2.5%. The zinc additives also substantially enhance the film stability in air, and we use cross-sectional chemical mapping to show that this enhanced stability is because of a reduction in tin-rich clusters. By fabricating field-effect transistors, we observe that the introduction of zinc results in controlled p-doping. Finally, we show that zinc additives also enhance power conversion efficiencies and the stability of solar cells. Our results demonstrate substantially improved low-bandgap perovskites for solar cells and versatile electronic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748266 | PMC |
http://dx.doi.org/10.1021/acsenergylett.9b01446 | DOI Listing |
Nat Commun
December 2024
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Halide perovskites have emerged as promising materials for a wide variety of optoelectronic applications, including solar cells, light-emitting devices, photodetectors, and quantum information applications. In addition to their desirable optical and electronic properties, halide perovskites provide tremendous synthetic flexibility through variation of not only their chemical composition but also their structure and morphology. At the heart of their use in optoelectronic technologies is the interaction of light with electronic excitations in the form of excitons.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass.
View Article and Find Full Text PDFChemistry
December 2024
East China University of Science and Technology, School of Materials Science and Engineering, meilong Road, 200237, shanghai, CHINA.
Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.
View Article and Find Full Text PDFEnergy Environ Sci
December 2024
Department of Physics, University of Oxford, Clarendon Laboratory Oxford OX1 3PU UK
It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!