For the first time, we report about two extremely low birth weight infants who were born at 25 and 22 weeks' gestation and who survived functional pulmonary atresia (fPA) with normal intracardiac anatomy. A slow, reflected, and bimodal blood flow pattern in the pulmonary artery (both cases) and the presence of pulmonary regurgitation (1 case) were useful for diagnosing fPA. Timely use of lipo-prostaglandin E1 to maintain adequate pulmonary flow and reduce pulmonary arterial resistance and sodium bicarbonate to improve acidosis were effective treatments to attain forward flow. As optimal management is essential for the intact survival of extremely early preterm infants and the accurate diagnosis of fPA is difficult without the awareness of the disease entity, our cases underline the importance of recognizing that fPA can occur even in extremely low birth weight infants with normal intracardiac anatomy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753005PMC
http://dx.doi.org/10.1055/s-0039-1697960DOI Listing

Publication Analysis

Top Keywords

extremely low
12
low birth
12
birth weight
12
weight infants
12
normal intracardiac
12
intracardiac anatomy
12
survived functional
8
functional pulmonary
8
pulmonary atresia
8
pulmonary
6

Similar Publications

Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.

View Article and Find Full Text PDF

20% acute pancreatitis (AP) develops into severe AP (SAP), a global health crisis, with an increased mortality rate to 30%-50%. Mitochondrial damage and immune disorders are direct factors, which exacerbate the occurrence and progression of AP. So far, mitochondrial and immunity injury in SAP remains largely elusive, with no established treatment options available.

View Article and Find Full Text PDF

The Puna region is distinguished by its extreme environmental conditions and highly valuable mining resources. However, the unregulated management of mine tailings poses a significant threat to the ecological integrity of this region. This study assesses the environmental impacts of mine tailings at La Concordia mine (Salta province, Argentina) and examines the physiological and biochemical adaptations of Parastrephia quadrangularis (Meyen) Cabrera that enable its survival under this extreme conditions.

View Article and Find Full Text PDF

This study aims to examine the hazards of zearalenone (ZEN) to humans and assess the risk of dietary exposure to ZEN, particularly in relation to precocious puberty in children from the Zhejiang Province. The test results from five types of food from the Zhejiang Province show that corn oil has the highest detection rate of 87.82%.

View Article and Find Full Text PDF

Foamy Melamine Resin-Silica Aerogel Composite-Derived Thermal Insulation Coating.

Nanomaterials (Basel)

January 2025

State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.

A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!