Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The protection of the aquatic environment while managing the risk of water scarcity in the Mediterranean region is challenging. Ensuring future sustainability of water resources needs improved monitoring networks and early warning system of future trends of water quality. A specific concern is given to nonpoint source pollution from agriculture, which is often the main source of water quality degradation in rivers. In this work, we focused on the Joumine river basin, a rural-catchment situated north Tunisia dominated by agricultural activities and exposed to eutrophication problems. Aiming to present an assessment framework of the spatial-temporal water quality variability and quantify "pressure-impact" relationships, we used a physically based modeling approach involving the river/basin integrated model PEGASE (Planification Et Gestion de l'ASsainissement des Eaux). PEGASE simulates watercourses physicochemical quality depending on the morphology of the drainage network, hydrometeorological conditions and natural and anthropogenic influences. Simulation results showed a better description of Joumine river water quality and helped in identifying exposed areas to nutrients export. Results have also emphasized the contribution of different pollution sources. We were able to examine the potential impact of agriculture diffuse pollution and we found that Nitrate is the element mostly threatening water quality. The nutrients patterns suggest that climate and farming practices are important factors controlling their transfer. These findings demonstrate that the adopted assessment approach in investigating the behavior of the studied hydrosystem can be a useful support to develop an appropriate surface water quality management program in a semiarid context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00267-019-01207-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!