Influence of exogenously applied spermine (Spm) on growth and salinity stress tolerance in tomato was investigated. Salinity reduced growth, chlorophyll synthesis and mineral uptake leading to significant reduction in photosynthesis, however Spm application proved beneficial in alleviating the decline to considerable extent. Applied Spm improved nitrate reductase activity, δ-amino levulinic acid content and gas exchange parameters more apparently at 100 μM than 50 μM concentrations. Spm application enhanced the accumulation of compatible osmolytes including proline, glycine betaine and sugars leading to greater tissue water content and photosynthesis. Salinity stress induced oxidative effects were mitigated by Spm treatment reflected interms of reduced accumulation of reactive oxygen species and the activities of protease and lipoxygenase, hence leading to membrane strengthening and protection of their function. Differential influence of exogenous Spm was evident on the functioning of antioxidant system with SOD, GR and APX activities much higher in Spm treated seedlings than CAT and DHAR. Increased synthesis of GSH, AsA and tocopherol in Spm treated seedlings was obvious thereby helping in maintaining the redox homeostasis and the enzymatic antioxidant functioning. Interestingly Spm application maintained the nitric oxide levels higher than control under normal condition while as lowered its concentrations in salinity stressed seedlings depicting existence of probable interaction. Activities of polyamine metabolizing enzymes was up-regulated and the accumulation of secondary metabolites including phenols and flavonoids also increased due to Spm application. Further studies are required to understand the mechanisms clearly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2019.09.021 | DOI Listing |
NPJ Digit Med
January 2025
Center for Advanced Studies in Bioscience Innovation Law (CeBIL), Faculty of Law, University of Copenhagen, Copenhagen, Denmark.
Can artificial intelligence improve clinical trial design? Despite their importance in medicine, over 40% of trials involve flawed protocols. We introduce and propose the development of application-specific language models (ASLMs) for clinical trial design across three phases: ASLM development by regulatory agencies, customization by Health Technology Assessment bodies, and deployment to stakeholders. This strategy could enhance trial efficiency, inclusivity, and safety, leading to more representative, cost-effective clinical trials.
View Article and Find Full Text PDFNature
January 2025
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
Agriculture dust contains many organic immunogenic compounds, and organic dust exposure is strongly associated with the development of immune-mediated chronic pulmonary diseases such as chronic obstructive pulmonary disease (COPD). Chronic organic dust exposure from agriculture sources induces chronic lung inflammatory diseases and organic dust exposure has recently been linked to an increased risk of developing dementia. The cytokine interleukin-22 (IL-22) has been established as an important mediator in the resolution and repair of lung tissues.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.
Introduction: As brain-computer interfacing (BCI) systems transition fromassistive technology to more diverse applications, their speed, reliability, and user experience become increasingly important. Dynamic stopping methods enhance BCI system speed by deciding at any moment whether to output a result or wait for more information. Such approach leverages trial variance, allowing good trials to be detected earlier, thereby speeding up the process without significantly compromising accuracy.
View Article and Find Full Text PDFBiomolecules
November 2024
Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain.
Plants are a valuable source of specialized metabolites that provide a plethora of therapeutic applications. They are natural defenses that plants use to adapt and respond to their changing environment. Decoding their biosynthetic pathways and understanding how specialized plant metabolites (SPMs) respond to biotic or abiotic stress will provide vital knowledge for plant biology research and its application for the future sustainable production of many SPMs of interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!