A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel polysaccharide from Malus halliana Koehne with coagulant activity. | LitMetric

A novel polysaccharide from Malus halliana Koehne with coagulant activity.

Carbohydr Res

National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Kaifeng, 475004, China. Electronic address:

Published: November 2019

A novel polysaccharide in Malus halliana Koehne, named MHP-W, was isolated and purified by DEAE-52 cellulose and Sephadex G-100 columns. Structural features were identified by high performance size-exclusion chromatography (HPSEC), fourier transform infrared (FT-IR) spectrometer, gas chromatography (GC) and (1D & 2D) NMR Spectroscopy. Structural characterization showed that the molecular weight of MHP-W was 353 kDa composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 2.59: 0.15: 0.23: 0.25: 9.70. The existence of β-glycosidic bond between the sugar units was confirmed by FT-IR and NMR spectroscopy. The effects of MHP-W on active part thrombin time (APTT), protothrombin time (PT), thrombin time (TT), and fibrinogen (FIB) were screened by a cell-based coagulation activity model. MHP-W could significantly shorten TT (p < 0.001) and increase FIB (p < 0.05) as compared with the control group. The results showed that MHP-W promoted bloodclotting through endogenous and exogenous coagulation pathways as well as increasing fibrinogen content, which indicated that MHP-W had procoagulant activities in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2019.107813DOI Listing

Publication Analysis

Top Keywords

novel polysaccharide
8
polysaccharide malus
8
malus halliana
8
halliana koehne
8
nmr spectroscopy
8
thrombin time
8
koehne coagulant
4
coagulant activity
4
activity novel
4
koehne named
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!