Black carbon (BC), produced from the incomplete combustion of carbonaceous fuels, has emerged as a major contributor to global climate change with adverse health effects. Based on one-year (2016.06.01-2017.06.30) equivalent black carbon (eBC) measurements, this study analyzed the characteristics of eBC concentrations and the local-regional contributions at an urban site (Pudong, PD) and a suburban site (Qingpu, QP) in Shanghai, China. The results showed that the annual average eBC concentrations were 1.17 ± 0.61 μg m and 2.09 ± 0.97 μg m at PD and QP, respectively. The high eBC concentrations occurred in winter and at weekends both for PD and QP. There were significant negative correlation coefficients between the daily eBC, the daily wind speed (WS) and the daily boundary layer height (BLH) at PD (r: 0.45, r = -0.35, p < 0.01) and QP (r: 0.49, r = -0.32, p < 0.01). And the relative higher eBC concentrations coincided with southerly, southwesterly and westerly winds although these winds had lower frequencies. This could be related to the agricultural fire in these directions during summer harvesttime. The significant partial correlation coefficients of eBC-CO (r:0.37-0.64, r:0.18-0.44, p < 0.01) and eBC-NO (r:0.49-0.74, r:0.38-0.75, p < 0.01) could suggest that eBC mainly come from vehicular exhaust emissions in Shanghai. Besides, the higher eBC/PM (5.29% ± 1.94%) and eBC/CO(0.30% ± 0.14%) at QP indicated the more combustion activities and diesel-powered vehicle emissions in suburban areas. The concentration weighted trajectory (CWT) analysis indicated that the surrounding areas at the junction of Shanghai, Jiangsu, and Zhejiang provinces seemed to be relatively the most important sources outside of Shanghai.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2019.113188 | DOI Listing |
J Phys Chem A
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
NO is a significant primary atmospheric pollutant that plays a key role in atmospheric chemistry. It serves as a crucial precursor to photochemical smog, acid rain, and secondary particulate matter and is instrumental in determining the atmospheric oxidation capacity. In this review, we focus on the heterogeneous chemistry of NO, which has been demonstrated to significantly influence the sources and sinks of various nitrogen-containing species through field measurements and model simulations.
View Article and Find Full Text PDFPLoS One
January 2025
Business School, Huaqiao University, Quanzhou, Fujian, China.
Global climate change has become one of the most large-scale, widespread, and far-reaching challenges facing mankind. Against this background, China has proposed a "dual-carbon" target in 2020, which greatly demonstrates China's determination and commitment to carbon emission reduction, and the burden of realizing the "dual-carbon" target is mainly borne by heavy polluters. The burden of achieving the "dual-carbon" goal is mainly borne by the heavily polluting firms.
View Article and Find Full Text PDFCan J Kidney Health Dis
January 2025
Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
ACS Appl Mater Interfaces
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Shengbei Street 4888, 130102 Changchun, China. Electronic address:
Peatlands are significant global carbon sinks; however, their carbon storage functions are vulnerable to human activities. In the Greater Khingan Mountains of Northeast China, where forest and peatland ecosystems are interspersed extensively, prescribed burning is conducted annually on peatlands to prevent major forest fires. To investigate the effect of prescribed burning on carbon and nutrient cycling processes in peatlands, we conducted a three-year experiment in the Greater Khingan Mountains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!