Excessive pesticide residues in the environment have caused more and more serious social problems. In this article, the polymer materials and graphene oxide were smoothly grafted together through surface-initiated atom-transfer radical polymerization. A temperature and pH dual-sensitive adsorbent was successfully obtained, which was used for the removal of six sulfonylurea herbicides in the aquatic environment. Experiment results showed that the adsorbent could efficiently remove the tested pesticides in aqueous solution rapidly (only 1 min). The adsorption process was in consist with the pseudo-second-order kinetics equation and Freundlich model, and the thermodynamic parameters were also calculated. Furthermore, the mechanism for removal performance was judged as n-π, π-π, hydrogen bonding, hydrophobic and electrostatic interaction verdict. Exhilaratingly, the material showed no significant toxicity to Daphnia magna on risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2019.113150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!