DNMHMM: An approach to identify the differential nucleosome regions in multiple cell types based on a Hidden Markov Model.

Biosystems

State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China. Electronic address:

Published: November 2019

Nucleosome occupancy changes across cell types and environmental conditions and such changes often have profound influence in transcription. It's of importance to identify the differential nucleosome regions (DNRs) where the nucleosome occupancy level differs across cell types. Here we developed DNMHMM, a Hidden Markov Model (HMM) based algorithm, to detect the DNRs with nucleosomal DNA sequenced dataset. The performance evaluation indicates that DNMHMM is advisable for multi-cell type comparison. Upon testing this model in yeast mutants, where the modifiable histone residues were mutated into alanine, we found that DNA sequences of the dynamic nucleosomes lack 10-11 bp periodicities and harbor binding motifs of the nucleosome remodelling complex. Moreover, the highly expressed genes have more dynamic nucleosomes at promoters. We further compared nucleosome occupancy between resting and activated human CD4 T cells with this model. It was revealed that during the activation of CD4 T cells, dynamic nucleosomes are enriched at regulatory sites, hence, up to some extent can affect the gene expression level. Taken together, DNMHMM offers the possibility to access precise nucleosome dynamics among multiple cell types and also can describe the closer association between nucleosome and transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2019.104033DOI Listing

Publication Analysis

Top Keywords

cell types
16
nucleosome occupancy
12
dynamic nucleosomes
12
identify differential
8
nucleosome
8
differential nucleosome
8
nucleosome regions
8
multiple cell
8
hidden markov
8
markov model
8

Similar Publications

Therapeutic human papillomavirus (HPV) DNA vaccine is an attractive option to control existed HPV infection and related lesions. The two early viral oncoproteins, E6 and E7, are continuously expressed in most HPV-related pre- and cancerous cells, and are ideal targets for therapeutic vaccines. We have previously developed an HPV 16 DNA vaccine encoding a modified E7/HSP70 (mE7/HSP70) fusion protein, which demonstrated significant antitumor effects in murine models.

View Article and Find Full Text PDF

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.

View Article and Find Full Text PDF

CASP5 associated with PANoptosis promotes tumorigenesis and progression of clear cell renal cell carcinoma.

Cancer Cell Int

January 2025

Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.

Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.

View Article and Find Full Text PDF

Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma.

Eur J Med Res

January 2025

Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.

Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.

Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!