Optical technologies in the long-wave infrared (LWIR) spectrum (7-14 μm) offer important advantages for high-resolution thermal imaging in near or complete darkness. The use of polymeric transmissive materials for IR imaging offers numerous cost and processing advantages but suffers from inferior optical properties in the LWIR spectrum. A major challenge in the design of LWIR-transparent organic materials is that nearly all organic molecules absorb in this spectral window which lies within the so-called IR-fingerprint region. We report on a new molecular-design approach to prepare high refractive index polymers with enhanced LWIR transparency. Computational methods were used to accelerate the design of novel molecules and polymers. Using this approach, we have prepared chalcogenide hybrid inorganic/organic polymers (CHIPs) with enhanced LWIR transparency and thermomechanical properties via inverse vulcanization of elemental sulfur with new organic co-monomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201910856 | DOI Listing |
Mol Plant
January 2025
Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China. Electronic address:
Wheat (Triticum aestivum L.) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
Recent advances in biomolecular self-assembly have transformed material science, enabling the creation of novel materials with unparalleled precision and functionality. Among these innovations, 3D DNA crystals have emerged as a distinctive class of macroscopic materials, engineered through the bottom-up approach by DNA self-assembly. These structures uniquely combine precise molecular ordering with high programmability, establishing their importance in advanced material design.
View Article and Find Full Text PDFMol Plant
January 2025
Center for Applied Genetic Technologies, University of Georgia, Athens, USA.
Soybean, the fourth most important crop in the world, uniquely serves as a source of both plant oil and plant protein for the world's food and animal feed. Although soybean production has increased approximately 13-fold over the past 60 years, the continually growing global population necessitates further increases in soybean production. In the past, especially in the last decade, significant progress has been made in both functional genomics and molecular breeding.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
Perpendicular nanochannel creation of two-dimensional (2D) nanostructures requires highly controlled anisotropic drilling processes of the entire structure via void formation. However, chemical approaches for the creation of porosity and defects of 2D nanostructures have been challenging due to the strong basal plane chemical stability and the use of harsh reactants, tending to give randomly corroded 2D structures. In this study, we introduce Lewis acid-base conjugates (LABCs) as molecular drillers with attenuated chemical reactivity which results in the well-defined perpendicular nanochannel formation of 2D TiS nanoplates.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
Urinary catheters serve as critical medical devices in clinical practice. However, the currently used urinary catheters lack efficient antibacterial and lubricating properties, often leading to discomfort with patients and even severe urinary infections. Herein, a new strategy of supramolecular assembly and disassembly of chitosan (Cs) is developed that enables efficient antibacterial lubricous and biodegradable hydrogel urinary catheters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!