Insulin stimulates de novo lipid synthesis in the liver and in cultured hepatocytes via its ability to activate sterol regulatory element-binding protein 1c (SREBP-1c). Although PI3K-AKT-mTORC1-p70S6K-signaling kinases are known to drive feed-forward expression of SREBP-1c, the identity of the phosphorylated amino acid residue(s) putatively involved in insulin-stimulated de novo lipogenesis remains elusive. We obtained in silico and mass spectrometry evidence, that was combined with siRNA strategies, to discover that insulin-induced phosphorylation of serine 418, serine 419, and serine 422 in rat SREBP-1c was most likely mediated by p70S6 kinase. Here, for the first time, we show that insulin-induced phosphorylation of these 3 serine residues mainly impinged on the mechanisms of proteostasis of both full-length and mature SREBP-1c in the McArdle-RH7777 hepatoma cells. Consistent with this conclusion, nascent SREBP-1c, substituted with phosphomimetic aspartic acid residues at these 3 sites, was resistant to proteasomal degradation. As a consequence, endoplasmic reticulum to Golgi migration and proteolytic maturation of pSREBP-1c was significantly enhanced which led to increased accumulation of mature nSREBP-1c, even in the absence of insulin. Remarkably, aspartic acid substitutions at S418, S419 and S422 also protected the nascent SREBP-1c from ubiquitin-mediated proteasome degradation thus increasing its steady-state levels and transactivation potential in the nucleus. These complementary effects of p70S6K-mediated phosphorylation on proteostasis of pSREBP-1c were necessary and sufficient to account for insulin's ability to enhance transcription of genes controlling de novo lipogenesis in hepatocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-019-03625-5 | DOI Listing |
PLoS One
January 2025
Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, Canada.
Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Utah, Salt Lake City, UT, USA.
Background: Neurodegenerative disorders such as Alzheimer's Disease (AD) are increasingly associated with irregular lipid accumulation. Dysfunction in the catabolism of sphingolipids leads to many neurodegenerative disorders but has only recently garnered interest in AD. Excess ceramide deposition has been observed in Aβ-plaques, plasma, and cerebrospinal fluid in AD patients and AD mouse models.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Pediatrics, University of California San Diego, La Jolla, CA, United States.
[This corrects the article DOI: 10.3389/fendo.2022.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
Nylon 12 is valued for its exceptional properties and diverse industrial applications. Traditional chemical synthesis of nylon 12 faces significant technical challenges and environmental concerns, while bioproduction from plant-extracted decanoic acid (DDA) raises issues related to deforestation and biodiversity loss. Here, we show the development of an engineered Escherichia coli cell factory capable of biosynthesizing the nylon 12 monomer, ω-aminododecanoic acid (ω-AmDDA), from glucose.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
Phospholipids are the most abundant component in lipid membranes and are essential for the structural and functional integrity of the cell. In eukaryotic cells, phospholipids are primarily synthesized de novo through the Kennedy pathway that involves multiple enzymatic processes. The terminal reaction is mediated by a group of cytidine-5'-diphosphate (CDP)-choline /CDP-ethanolamine-phosphotransferases (CPT/EPT) that use 1,2-diacylglycerol (DAG) and CDP-choline or CDP-ethanolamine to produce phosphatidylcholine (PC) or phosphatidylethanolamine (PE) that are the main phospholipids in eukaryotic cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!