Evolution is a powerful tool for the breeding of microorganisms, while the connection between the changes of intracellular metabolism and different evolution directions is still unclear, which once clarified, will greatly expand the application of evolutionary engineering. We aim to clarify the correlation between metabolism changes and evolution directions in two Corynebacterium glutamicum strains for L-valine and L-leucine overproducing originated from the same parental strain by repeated random mutagenesis and selection. GC-MS metabolomics was performed to identify and quantify intracellular metabolites of the evolved and wild-type C. glutamicum strains. Time-series comparison of the fermentation processes was performed. The metabolism differences of three strains mainly exist in central carbon metabolism and the stress-resisting modes. C. glutamicum XV developed an overall "pyruvate-saving" mode for L-valine synthesis, and adopted a trehalose accumulating strategy to resist environmental stresses. C. glutamicum CP depended on an enhanced "pyruvate-producing" mode, together with certain "pyruvate-saving" strategies, for efficient L-leucine synthesis, and accumulated proline, my-inositol, and inositol as the stress-resisting measure. These elaborate regulation strategies could be used in future metabolic engineering, making evolution more informative and applicable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-019-02207-5 | DOI Listing |
Phytochemistry
December 2024
College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi 710069, China. Electronic address:
L., a member of the Oleaceae family with approximately 60 species worldwide, is widely distributed in the warm temperate zone of the northern hemisphere. It is not only used as a folk medicine for treating various illnesses but is also documented in medical books.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Hydraulic Engineering, Dalian University of Technology, Dalian, 116024, China.
Groundwater pollution has become a global challenge, posing significant threats to human health and ecological environments. Machine learning, with its superior ability to capture non-linear relationships in data, has shown significant potential in addressing the groundwater pollution issues. This review presents a comprehensive bibliometric analysis of 1,462 articles published between 2000 and 2023, offering an overview of the current state of research, analyzing development trends, and suggesting future directions.
View Article and Find Full Text PDFMol Microbiol
December 2024
CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France.
DNA topology is a direct consequence of the double helical nature of DNA and is defined by how the two complementary DNA strands are intertwined. Virtually every reaction involving DNA is influenced by DNA topology or has topological effects. It is therefore of fundamental importance to understand how this phenomenon is controlled in living cells.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Peoples' Friendship University of Russia, Moscow, 117198 Russia.
The E6 and E7 proteins of the high risk human papillomaviruses (HR HPVs) play a key role in the oncogenesis associated with papillomavirus infection. Data on the variability of these proteins are limited, and the factors affecting their variability are still poorly understood. We analyzed the variability of the currently known sequences of the HPV type 16 (HPV16) E6 and E7 proteins, taking into account their geographic origin and year of sample collection, as well as the direction of their evolution in the major geographic regions of the world.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China. Electronic address:
The modification of tryptophan hydroxylase (TPH) for the biosynthesis of 5-hydroxytryptophan (5-HTP) has recently become a focus of research. In this study, we established a droplet-based ultrahigh-throughput microfluidic screening platform (DTSP) to improve the industrial properties of TPH, whereas a bacterial biosensor for L-tryptophan (L-Trp) detection was engineered to improve sensitivity. The promoter pJ23111 achieved a strong negative correlation between the L-Trp concentration and the fluorescence output of the biosensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!