Apolipoprotein-ε4 (APOE-ε4)-common variant is a major genetic risk factor for cognitive decline and Alzheimer's disease (AD). An accelerated rate of biological aging could contribute to this increased risk. Glycation of serum proteins due to excessive glucose and reactive oxygen species leads to the formation of advanced glycation end products (AGEs)-a risk factor for diabetes and AD, and decline in motor functioning in elderly adults. Aim of present study was to investigate impact of APOE-ε4 allele containing genotype and accumulation of AGEs in plasma on telomere length (TL). Results showed that TL is significantly shorter in APOE-ε4 carriers compared with non-APOE-ε4 carriers (p = .0003). Higher plasma glucose level was associated with shorter TL irrespective of APOE-ε4 allele containing genotype (r = -.26; p = .0004). With regard to AGEs, higher plasma glyoxal and fluorescent AGEs concentrations were inversely related to TL (r = -.16; p = .03; r = -.28; p = .0001), however, plasma Nε-(carboxymethyl)lysine levels didn't correlate with TL (r = -.04; p = .57). Results support the hypotheses that APOE-ε4 carriers have shorter telomeres than noncarriers and telomere erosion is increased with higher concentration of glucose, fluorescent AGEs, and glyoxal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/gerona/glz203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!