SeqSero, launched in 2015, is a software tool for serotype determination from whole-genome sequencing (WGS) data. Despite its routine use in public health and food safety laboratories in the United States and other countries, the original SeqSero pipeline is relatively slow (minutes per genome using sequencing reads), is not optimized for draft genome assemblies, and may assign multiple serotypes for a strain. Here, we present SeqSero2 (github.com/denglab/SeqSero2; denglab.info/SeqSero2), an algorithmic transformation and functional update of the original SeqSero. Major improvements include (i) additional sequence markers for identification of species and subspecies and certain serotypes, (ii) a k-mer based algorithm for rapid serotype prediction from raw reads (seconds per genome) and improved serotype prediction from assemblies, and (iii) a targeted assembly approach for specific retrieval of serotype determinants from WGS for serotype prediction, new allele discovery, and prediction troubleshooting. Evaluated using 5,794 genomes representing 364 common U.S. serotypes, including 2,280 human isolates of 117 serotypes from the National Antimicrobial Resistance Monitoring System, SeqSero2 is up to 50 times faster than the original SeqSero while maintaining equivalent accuracy for raw reads and substantially improving accuracy for assemblies. SeqSero2 further suggested that 3% of the tested genomes contained reads from multiple serotypes, indicating a use for contamination detection. In addition to short reads, SeqSero2 demonstrated potential for accurate and rapid serotype prediction directly from long nanopore reads despite base call errors. Testing of 40 nanopore-sequenced genomes of 17 serotypes yielded a single H antigen misidentification. Serotyping is the basis of public health surveillance of It remains a first-line subtyping method even as surveillance continues to be transformed by whole-genome sequencing. SeqSero allows the integration of serotyping into a whole-genome-sequencing-based laboratory workflow while maintaining continuity with the classic serotyping scheme. SeqSero2, informed by extensive testing and application of SeqSero in the United States and other countries, incorporates important improvements and updates that further strengthen its application in routine and large-scale surveillance of by whole-genome sequencing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856333 | PMC |
http://dx.doi.org/10.1128/AEM.01746-19 | DOI Listing |
PLoS Pathog
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
SARS-CoV-2 continues to transmit and evolve in humans and animals. White-tailed deer (Odocoileus virginianus) have been previously identified as a zoonotic reservoir for SARS-CoV-2 with high rates of infection and probable spillback into humans. Here we report sampling 1,127 white-tailed deer (WTD) in Pennsylvania, and a genomic analysis of viral dynamics spanning 1,017 days between April 2021 and January 2024.
View Article and Find Full Text PDFMov Disord
January 2025
British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
Background: Trinucleotide repeat expansions are an emerging class of genetic variants associated with various movement disorders. Unbiased genome-wide analyses can reveal novel genotype-phenotype associations and provide a diagnosis for patients and families.
Objective: The aim was to identify the genetic cause of a severe progressive movement disorder phenotype in 2 affected brothers.
Mol Genet Genomic Med
January 2025
College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
Background: The use of exome sequencing (ES) has helped in detecting many variants and genes that cause primary adrenal insufficiency (PAI). The diagnosis of PAI is difficult and can be life-threatening if not treated urgently. Consanguinity can impact the detection of recessively inherited genes.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Research Center of Genetic Resources, National Agriculture and Food Research Organization, Ibaraki, Japan.
Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.
View Article and Find Full Text PDFCerebellum
January 2025
Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare inherited condition described worldwide and characterized by a wide spectrum of heterogeneity in terms of genotype and phenotype. How sacsin loss leads to neurodegeneration is still unclear, and current knowledge indicates that sacsin is involved in multiple functional mechanisms. We hence hypothesized the existence of epigenetic factors, in particular alterations in methylation patterns, that could contribute to ARSACS pathogenesis and explain the pleiotropic effects of SACS further than pathogenic mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!