Background: Localised prostate cancer is commonly treated with external-beam radiotherapy. Moderate hypofractionation has been shown to be non-inferior to conventional fractionation. Ultra-hypofractionated stereotactic body radiotherapy would allow shorter treatment courses but could increase acute toxicity compared with conventionally fractionated or moderately hypofractionated radiotherapy. We report the acute toxicity findings from a randomised trial of standard-of-care conventionally fractionated or moderately hypofractionated radiotherapy versus five-fraction stereotactic body radiotherapy for low-risk to intermediate-risk localised prostate cancer.

Methods: PACE is an international, phase 3, open-label, randomised, non-inferiority trial. In PACE-B, eligible men aged 18 years and older, with WHO performance status 0-2, low-risk or intermediate-risk prostate adenocarcinoma (Gleason 4 + 3 excluded), and scheduled to receive radiotherapy were recruited from 37 centres in three countries (UK, Ireland, and Canada). Participants were randomly allocated (1:1) by computerised central randomisation with permuted blocks (size four and six), stratified by centre and risk group, to conventionally fractionated or moderately hypofractionated radiotherapy (78 Gy in 39 fractions over 7·8 weeks or 62 Gy in 20 fractions over 4 weeks, respectively) or stereotactic body radiotherapy (36·25 Gy in five fractions over 1-2 weeks). Neither participants nor investigators were masked to allocation. Androgen deprivation was not permitted. The primary endpoint of PACE-B is freedom from biochemical or clinical failure. The coprimary outcomes for this acute toxicity substudy were worst grade 2 or more severe Radiation Therapy Oncology Group (RTOG) gastrointestinal or genitourinary toxic effects score up to 12 weeks after radiotherapy. Analysis was per protocol. This study is registered with ClinicalTrials.gov, NCT01584258. PACE-B recruitment is complete and follow-up is ongoing.

Findings: Between Aug 7, 2012, and Jan 4, 2018, we randomly assigned 874 men to conventionally fractionated or moderately hypofractionated radiotherapy (n=441) or stereotactic body radiotherapy (n=433). 432 (98%) of 441 patients allocated to conventionally fractionated or moderately hypofractionated radiotherapy and 415 (96%) of 433 patients allocated to stereotactic body radiotherapy received at least one fraction of allocated treatment. Worst acute RTOG gastrointestinal toxic effect proportions were as follows: grade 2 or more severe toxic events in 53 (12%) of 432 patients in the conventionally fractionated or moderately hypofractionated radiotherapy group versus 43 (10%) of 415 patients in the stereotactic body radiotherapy group (difference -1·9 percentage points, 95% CI -6·2 to 2·4; p=0·38). Worst acute RTOG genitourinary toxicity proportions were as follows: grade 2 or worse toxicity in 118 (27%) of 432 patients in the conventionally fractionated or moderately hypofractionated radiotherapy group versus 96 (23%) of 415 patients in the stereotactic body radiotherapy group (difference -4·2 percentage points, 95% CI -10·0 to 1·7; p=0·16). No treatment-related deaths occurred.

Interpretation: Previous evidence (from the HYPO-RT-PC trial) suggested higher patient-reported toxicity with ultrahypofractionation. By contrast, our results suggest that substantially shortening treatment courses with stereotactic body radiotherapy does not increase either gastrointestinal or genitourinary acute toxicity.

Funding: Accuray and National Institute of Health Research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838670PMC
http://dx.doi.org/10.1016/S1470-2045(19)30569-8DOI Listing

Publication Analysis

Top Keywords

stereotactic body
36
body radiotherapy
36
conventionally fractionated
28
fractionated moderately
28
moderately hypofractionated
28
hypofractionated radiotherapy
28
radiotherapy
20
acute toxicity
16
radiotherapy group
16
stereotactic
9

Similar Publications

Background: This retrospective study explores two radiomics methods combined with other clinical variables for predicting recurrence free survival (RFS) and overall survival (OS) in patients with pulmonary metastases treated with stereotactic body radiotherapy (SBRT).

Methods: 111 patients with 163 metastases treated with SBRT were included with a median follow-up time of 927 days. First-order radiomic features were extracted using two methods: 2D CT texture analysis (CTTA) using TexRAD software, and a data-driven technique: functional principal components analysis (FPCA) using segmented tumoral and peri-tumoural 3D regions.

View Article and Find Full Text PDF

Objective: This review aims to formulate the most current, evidence-based recommendations regarding radiation therapy, radiosurgery, and chemotherapy for patients with metastatic spine tumors.

Methods: A systematic literature using PRISMA methodology was performed from 2010-2023 using the search terms "radiosurgery," "radiation therapy," "external beam radiation therapy," or "stereotactic body radiation therapy" in conjunction with "spinal," "spine," "metastasis," "metastases," or "metastatic."

Results: Spinal metastases should be managed in a multidisciplinary team consisting of spine surgeons, radiation oncologists, radiologists and oncologists.

View Article and Find Full Text PDF

Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes.

Mol Med

December 2024

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.

Background: Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them.

View Article and Find Full Text PDF

Cine-magnetic resonance imaging (MRI) has been used to track respiratory-induced motion of the liver and tumor and assist in the accurate delineation of tumor volume. Recent developments in compressed sensitivity encoding (SENSE; CS) have accelerated temporal resolution while maintaining contrast resolution. This study aimed to develop and assess hepatobiliary phase (HBP) cine-MRI scans using CS.

View Article and Find Full Text PDF

Despite decades of improvements in cytotoxic therapy, the current standard of care for locally advanced pancreatic cancer (LAPC) provides, on average, only a few months of survival benefit. Stereotactic Body Radiation Therapy (SBRT), a technique that accurately delivers high doses of radiation to tumors in fewer fractions, has emerged as a promising therapy to improve local control of LAPC; however, its effects on the tumor microenvironment and hypoxia remain poorly understood. To explore how SBRT affects pancreatic tumors, we combined an orthotopic mouse model of pancreatic cancer with an intravital microscopy platform to visualize changes to the in vivo tumor microenvironment in real-time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!