Traumatic brain injury (TBI) is one of the main causes of disability in children and young adults, as well as a significant concern for elderly individuals. Depending on the severity, TBI can have a long-term impact on the quality of life for survivors of all ages. The primary brain injury can result in severe disability or fatality, and secondary brain damage can increase the complexities in cellular, inflammatory, neurochemical, and metabolic changes in the brain, which can last decades post-injury. Thus, survival from a TBI is often accompanied by lifelong disabilities. Despite the significant morbidity, mortality, and economic loss, there are still no effective treatment options demonstrating an improved outcome in a large multi-center Phase III trial, which can be partially attributed to poor target engagement of delivered therapeutics. Thus, there is a significant unmet need to develop more effective delivery strategies to overcome the biological barriers that would otherwise inhibit transport of materials into the brain to prevent the secondary long-term damage associated with TBI. The complex pathology of TBI involving the blood-brain barrier (BBB) has limited the development of effective therapeutics and diagnostics. Therefore, it is of great importance to develop novel strategies to target the BBB. The leaky BBB caused by a TBI may provide opportunities for therapeutic delivery via nanoparticles (NP). The focus of this review is to provide a survey of NP-based strategies employed in preclinical models of TBI and to provide insights for improved NP based diagnostic or treatment approaches. Both passive and active delivery of various NPs for TBI are discussed. Finally, potential therapeutic targets where improved NP-mediated delivery could increase target engagement are identified with the overall goal of providing insight into open opportunities for NP researchers to begin research in TBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781280 | PMC |
http://dx.doi.org/10.3390/pharmaceutics11090473 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
Traumatic Brain Injury (TBI) is a devastating cause of death and disability. Outcomes following TBI have been extensively studied; however, less attention has been given to identifying characteristics of individuals who have a favorable outcome following severe TBI. We conducted a retrospective analysis of a database containing information on TBI patients admitted to a level 1 trauma center between 2015 and 2021.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Background: Traumatic brain injury (TBI) is characterized by high mortality and disability rates. Disease-associated microglia (DAM) are a newly discovered subtype of microglia. However, their presence and function in the acute phase of TBI remain unclear.
View Article and Find Full Text PDFCrit Care
January 2025
Brain Physics Laboratory, Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, UK.
Background: The oxygen reactivity index (ORx) reflects the correlation between focal brain tissue oxygen (pbtO) and the cerebral perfusion pressure (CPP). Previous, small cohort studies were conflicting on whether ORx conveys cerebral autoregulatory information and if it is related to outcome in traumatic brain injury (TBI). Thus, we aimed to investigate these issues in a larger TBI cohort.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA. Electronic address:
Background: There are no approved oral disease-modifying treatments for Alzheimer's disease (AD).
Objectives: The objective of this study was to assess efficacy and safety of blarcamesine (ANAVEX®2-73), an orally available small-molecule activator of the sigma-1 receptor (SIGMAR1) in early AD through restoration of cellular homeostasis including autophagy enhancement.
Design: ANAVEX2-73-AD-004 was a randomized, double-blind, placebo-controlled, 48-week Phase IIb/III trial.
BMJ Open
January 2025
Oslo Sports Trauma Research Centre, Department of Sport Sciences, Norwegian School of Sports Sciences, Oslo, Oslo, Norway.
Introduction: Repetitive head impacts (RHI) in sports may represent a risk factor for long-term cognitive and neurological sequelae. Recent studies have identified an association between playing football at the top level and an elevated risk of cognitive impairment and neurodegenerative disease. However, these were conducted on men, and there is a knowledge gap regarding these risks in female athletes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!