Old world hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) upon zoonotic transmission to humans. In Europe, the Puumala virus (PUUV) is the main causative agent of HFRS. Tula virus (TULV) is also widely distributed in Europe, but there is little knowledge about the pathogenicity of TULV for humans, as reported cases are rare. We studied the replication of TULV in different cell types in comparison to the pathogenic PUUV and analyzed differences in stimulation of innate immunity. While both viruses replicated to a similar extent in interferon (IFN)-deficient Vero E6 cells, TULV replication in human lung epithelial (A549) cells was slower and less efficient when compared to PUUV. In contrast to PUUV, no replication of TULV could be detected in human microvascular endothelial cells and in macrophages. While a strong innate immune response towards PUUV infection was evident at 48 h post infection, TULV infection triggered only a weak IFN response late after infection of A549 cells. Using appropriate in vitro cell culture models for the orthohantavirus infection, we could demonstrate major differences in host cell tropism, replication kinetics, and innate immune induction between pathogenic PUUV and the presumably non- or low-pathogenic TULV that are not observed in Vero E6 cells and may contribute to differences in virulence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784088PMC
http://dx.doi.org/10.3390/v11090855DOI Listing

Publication Analysis

Top Keywords

innate immune
12
tula virus
8
replication kinetics
8
kinetics innate
8
endothelial cells
8
cells macrophages
8
replication tulv
8
pathogenic puuv
8
vero cells
8
a549 cells
8

Similar Publications

Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5.

Sci Adv

January 2025

Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China.

Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.

View Article and Find Full Text PDF

Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.

View Article and Find Full Text PDF

Unlabelled: Persistent viral infections can be an important medical problem, with persistently infected (PI) cells extending viral shedding, maintaining inflammation, and providing potential sources for new viral variants. Given that PI cells can acquire resistance to some innate immune pathways, we tested the hypothesis that complement (C')-mediated lysis of parainfluenza virus 5 (PIV5)-infected cells would differ between acute-infected and PI cells. Biochemical and real-time cell viability assays showed effective C'-mediated lysis of A549 lung cells acutely infected with PIV5, through pathways that depended on C3 and C5, but largely independent of C6.

View Article and Find Full Text PDF

(PA) is an opportunistic gram-negative pathogen that can infect the cornea, leading to permanent vision loss. Autophagy is a cannibalistic process that drives cytoplasmic components to the lysosome for degradation and/or recycling. Autophagy has been shown to play a key role in the removal of intracellular pathogens and, as such, is an important component of the innate immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!