Cold stress can induce autophagy mediated by excess corticosterone (CORT) in the hippocampus, but the internal mechanism induced by cold stress is not clear. In vivo, male and female C57BL/6 mice were stimulated in 4 °C, 3 h per day for 1 week to build the model of cold sress. In vitro, hippocampal neuronal cell line (HT22) cells were incubated with or without mifepristone (RU486) for 1 h, then treated with 400 μM cortisol (CORT) for 3 h. In vivo, autophagy was measured by western blotting. In vitro, monodansylcadaverine staining, western blotting, flow cytometry, transmission electron microscopy, and immunofluorescence were used to characterize the mechanism of autophagy induced by excess CORT. Autophagy was shown in mouse hippocampus tissues following cold exposure, including mitochondrial damage, autophagy, and 5' AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway activation after CORT treatment. Autophagy did not rely on the glucocorticoid receptor. In addition, autophagy in male mice was more severe. The study would provide new insight into the mechanisms and the negative effect of the cold stress response, which can inform the development of new strategies to combat the effects of hypothermia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770033PMC
http://dx.doi.org/10.3390/ani9090682DOI Listing

Publication Analysis

Top Keywords

cold stress
12
mitochondrial damage
8
hippocampal neuronal
8
autophagy
8
cold exposure
8
western blotting
8
cold
6
corticosterone excess-mediated
4
excess-mediated mitochondrial
4
damage induces
4

Similar Publications

Plant AT-rich protein and zinc-binding protein (PLATZ) family in Dendrobium huoshanense: identification, evolution and expression analysis.

BMC Plant Biol

December 2024

Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China.

PLATZ (plant A/T-rich protein and zinc-binding protein) transcription factors are essential for plant growth, development, and responses to abiotic stress. The regulatory role of PLATZ genes in the environmental adaptation of D. huoshanense is inadequately comprehended.

View Article and Find Full Text PDF

Drought and cold crucially affect plant growth and distribution. Plants have evolved complex molecular mechanisms to adapt to such adverse environmental conditions. This study examines two Elymus sibiricus (Es) germplasms differing in resilience to these stresses.

View Article and Find Full Text PDF

Central corticotropin releasing hormone receptor 2 may participate in gender differential regulation of cold-evoked eating behavior.

Neuroscience

December 2024

Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:

Corticotropin-releasing factor (CRF) is an important stress hormone, and because of the different distributions and functions of its receptors, CRF has various effects on the stress response of animals. CRF receptor 2 (CRFR2) is functional receptor of CRF that may be related to appetite regulation and sex differences. In this study, male and female C57BL/6 mice were exposed to an ambient temperature of 4 °C, and feed intake were determined.

View Article and Find Full Text PDF

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Interfacial functionalization and capillary force welding of enhanced silver nanowire-cellulose nanofiber composite electrodes for electroluminescent devices.

Int J Biol Macromol

December 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.

The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!