Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fisetin, a natural flavonoid found in plants, fruits and vegetables, exerts anti-cancer, anti-oxidant, anti-inflammatory and anti-mitotic effects. The current study instigates the protective effect of fisetin against lead-induced synaptic dysfunction, neuroinflammation and neurodegeneration in mice, and explores its underlying mechanisms. The results indicated fisetin can significantly ameliorated behavioral impairments in Pb-treated mice. Fisetin inhibited Pb-induced the apoptotic neurodegeneration, as indicated by the decreased levels of Bax and cleaved caspase-3. Fisetin suppressed activations of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), NF-κB and subsequently inactivate pro-inflammatory factor including interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). It can also decrease the accumulation of p-tau and amyloid-beta (Aβ) and increased the expression of the Aβ remover neprilysin (NEP) in brains of mice. Fisetin also reversed Pb-induced synaptic dysfunction by increasing the levels of synaptosomal associated protein-25 (SNAP-25), postsynaptic density-95 (PSD-95), cyclic-AMP-response element-binding protein (CREB) phosphorylation and calcium/calmodulin kinase II (CaMKII) phosphorylation. Fisetin promoted Pb-induced autophagy in the brains of mice. Moreover, fisetin can increase levels of the denosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation and SIRT1. Fisetin may be developed as a potential nutritional target for the prevention of Pb-induced neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2019.110824 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!