Mice lacking angiotensin type 2 receptor exhibit a sex-specific attenuation of insulin sensitivity.

Mol Cell Endocrinol

Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina. Electronic address:

Published: December 2019

The renin-angiotensin system modulates insulin action. Pharmacological stimulation of angiotensin type 2 receptor (AT2R) was shown to have beneficial metabolic effects in various animal models of insulin resistance and type 2 diabetes and also to increase insulin sensitivity in wild type mice. In this study we further explored the role of the AT2R on insulin action and glucose homeostasis by investigating the glycemic profile and in vivo insulin signaling status in insulin-target tissues from both male and female AT2R knockout (KO) mice. When compared to the respective wild-type (WT) group, glycemia and insulinemia was unaltered in AT2RKO mice regardless of sex. However, female AT2RKO mice displayed decreased insulin sensitivity compared to their WT littermates. This was accompanied by a compensatory increase in adiponectinemia and with a specific attenuation of the activity of main insulin signaling components (insulin receptor, Akt and ERK1/2) in adipose tissue with no apparent alterations in insulin signaling in either liver or skeletal muscle. These parameters remained unaltered in male AT2RKO mice as compared to male WT mice. Present data show that the AT2R has a physiological role in the conservation of insulin action in female but not in male mice. Our results suggest a sexual dimorphism in the control of insulin action and glucose homeostasis by the AT2R and reinforce the notion that pharmacological modulation of the balance between the AT1R and AT2R receptor could be important for treatment of metabolic syndrome and type 2 diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903409PMC
http://dx.doi.org/10.1016/j.mce.2019.110587DOI Listing

Publication Analysis

Top Keywords

insulin action
16
insulin
12
insulin sensitivity
12
insulin signaling
12
at2rko mice
12
mice
8
angiotensin type
8
type receptor
8
type diabetes
8
action glucose
8

Similar Publications

Winery By-Products and Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor.

Front Biosci (Landmark Ed)

January 2025

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.

Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

Metabolic syndrome is a metabolic disorder characterized by hypertension, dyslipidemia, impaired glucose tolerance, and abdominal obesity. Impaired insulin action or insulin resistance initiates metabolic syndrome. The prevalence of insulin resistance is increasing all over the world.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is significantly associated with oxidative stress, resulting from the imbalance between reactive oxygen species (ROS) production and antioxidant defenses. This imbalance contributes to insulin resistance, β-cell dysfunction, and complications in organs like the vasculature and nervous system. Glutathione (GSH), a major antioxidant, is crucial for neutralizing ROS, but GSH levels are notably low in T2DM, exacerbating oxidative stress and inflammation.

View Article and Find Full Text PDF

Nateglinide: A comprehensive profile.

Profiles Drug Subst Excip Relat Methodol

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia. Electronic address:

Nateglinide belongs to the meglitinide class of insulin secretagogues. It is used as an oral hypoglycemic agent for the treatment of type 2 diabetes mellitus. Nateglinide is an amino acid derivative of D-phenylalanine that binds to the ATP-sensitive potassium channels in pancreatic beta cells and stimulates the secretion of insulin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!