Protapion trifolii and P. fulvipes (Coleoptera: Brentidae) are major pests in European clover seed production. Previous studies have reported a high host plant fidelity of these weevils for red and white clover species, respectively, driven by host plant olfactory cues. Given the specific host preferences observed in these weevils, we aimed to elucidate to which extent such selectivity is reflected in their peripheral olfactory systems. Using an electrophysiological approach, we performed the first functional characterisation of olfactory sensory neurons (OSNs) in P. trifolii to a panel of volatile compounds emitted by red clover plants, and compared the results with the reported OSN types of P. fulvipes. Nineteen OSN classes were characterized in P. trifolii, with the majority of these neurons responding strongly to common volatiles released by the host plant. Based on response profiles, eight of these OSN classes have clear matches to OSN classes in P. fulvipes. The OSN colocalisation patterns and antennal frequency of these classes are similar in the two species. Additionally, the responses of these OSNs are generally highly conserved in the two species, with clear response shifts only revealed for two of the OSN classes. These response shifts in combination with additional response dissimilarities for compounds that vary in abundance between red and white clover plants may underlie the species-specific host preferences. Further behavioural and field experiments should focus on these differentially detected compounds to elucidate their potential role in host selection and use in semiochemical-based control of these pests.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2019.103948DOI Listing

Publication Analysis

Top Keywords

osn classes
16
host plant
12
olfactory sensory
8
sensory neurons
8
red clover
8
clover seed
8
protapion trifolii
8
coleoptera brentidae
8
red white
8
white clover
8

Similar Publications

Background: Insects detect odours using odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs) in the antennae. Ecologically important odours are often detected by selective and abundant OSNs; hence, ORs with high antennal expression. However, little is known about the function of highly expressed ORs in beetles, since few ORs have been functionally characterized.

View Article and Find Full Text PDF

Design of Highly Electrophilic and Stable Metal Nitrido Complexes.

Acc Chem Res

September 2024

School of Optoelectronic Materials and Technology, Jianghan University; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China.

ConspectusMetal oxo (M═O) and nitrido (M≡N) complexes are two important classes of high-valent transition metal complexes. The use of M═O as oxidants in chemical and biological systems has been extensively investigated. Nature makes use of M═O in enzymes such as cytochrome to oxidize a variety of substrates.

View Article and Find Full Text PDF

Critical periods are temporally-restricted, early-life windows when sensory experience remodels synaptic connectivity to optimize environmental input. In the Drosophila juvenile brain, critical period experience drives synapse elimination, which is transiently reversible. Within olfactory sensory neuron (OSN) classes synapsing onto single projection neurons extending to brain learning/memory centers, we find glia mediate experience-dependent pruning of OSN synaptic glomeruli downstream of critical period odorant exposure.

View Article and Find Full Text PDF

Molecular mechanisms of differentiation and class choice of olfactory sensory neurons.

Genesis

April 2024

Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.

The sense of smell is intricately linked to essential animal behaviors necessary for individual survival and species preservation. During vertebrate evolution, odorant receptors (ORs), responsible for detecting odor molecules, have evolved to adapt to changing environments, transitioning from aquatic to terrestrial habitats and accommodating increasing complex chemical environments. These evolutionary pressures have given rise to the largest gene family in vertebrate genomes.

View Article and Find Full Text PDF

Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!