Land use influences the prevalence and distribution of ticks due to the intimate relationship of ticks with their environment. This relationship occurs because land use alters two essential tick requirements: vertebrate hosts for blood meals and a suitable microclimate when off-host. Given the risks to human and animal health associated with pathogens transmitted by ticks, there is an ongoing need to understand the impact of environmental drivers on tick distributions. Here, we assessed how landscape features, neighborhood effects, and edges influenced tick occupancy and abundance across an agricultural landscape in southern Africa. We found that Rhipicephalus appendiculatus and Rhipicephalus simus increased in abundance closer to protected savanna, while Haemaphysalis elliptica increased in abundance closer to human habitation. The composition of the landscape surrounding savanna patches also differentially influenced the occupancy of each tick species; H. elliptica was more likely to be found in savanna patches surrounded by subsistence agriculture while R. appendiculatus and R. simus were more likely to be found in savanna surrounded by sugarcane monocultures. At the local scale we found that R. appendiculatus and R. simus avoided savanna edges. The availability of hosts and variation in vegetation structure between commercial agriculture, subsistence agriculture, and savanna likely drove the distribution of ticks at the landscape scale. Understanding how anthropogenic land use influences where ticks occur is useful for land use planning and for assessing public and animal health risks associated with ticks and tick-borne diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754170 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222879 | PLOS |
Animals (Basel)
September 2024
Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy.
The increase in acarological risk of tick bites is significantly driven by profound changes in landscape, which alter the density and distribution of wildlife that support tick populations. As a result of habitat shifts and land abandonment, which create environments conducive to tick proliferation, the risk of disease transmission to humans and animals is increasing. In this context, it is important to explore tick ecology by applying a comprehensive methodology.
View Article and Find Full Text PDFMed Vet Entomol
September 2024
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA.
The soft tick Ornithodoros turicata Duges (Acari: Argasidae) is a potential vector of African swine fever virus (ASFV). We evaluated the efficacy of two methods to collect soft ticks rapidly and efficiently from gopher tortoise (Gopherus polyphemus) burrows, which are ubiquitous throughout large regions of the southeastern United States and their burrows are a known microhabitat of O. turicata.
View Article and Find Full Text PDFParasitology
September 2023
School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
Many organisms live in fragmented populations, which has profound consequences on the dynamics of associated parasites. Metapopulation theory offers a canonical framework for predicting the effects of fragmentation on spatiotemporal host–parasite dynamics. However, empirical studies of parasites in classical metapopulations remain rare, particularly for vector-borne parasites.
View Article and Find Full Text PDFJ Med Entomol
November 2021
Naval Medical Research Center, Viral and Rickettsial Diseases Department, Silver Spring, MD, USA.
During September-December 2018, 25 live ticks were collected on-post at Fort Leavenworth, Kansas, in a home with a history of bat occupancy. Nine ticks were sent to the Army Public Health Center Tick-Borne Disease Laboratory and were identified as Carios kelleyi (Cooley and Kohls, 1941), a species that seldom bites humans but that may search for other sources of blood meals, including humans, when bats are removed from human dwellings. The ticks were tested for numerous agents of human disease.
View Article and Find Full Text PDFPLoS One
March 2020
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America.
Land use influences the prevalence and distribution of ticks due to the intimate relationship of ticks with their environment. This relationship occurs because land use alters two essential tick requirements: vertebrate hosts for blood meals and a suitable microclimate when off-host. Given the risks to human and animal health associated with pathogens transmitted by ticks, there is an ongoing need to understand the impact of environmental drivers on tick distributions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!