Preparation and Comparative Stability of a Kaolinite-Tetrabutylphosphonium Bromide Intercalation Compound for Heat and Solvent Treatments.

Langmuir

Kagami Memorial Institute for Materials Science and Technology , Waseda University, 2-8-26 Nishiwaseda , Shinjuku-ku, Tokyo 169-0051 , Japan.

Published: October 2019

A kaolinite-tetrabutylphosphonium bromide (TBPBr) intercalation compound (Kaol-TBPBr) was prepared from kaolinite providing inorganic aluminosilicate layers and TBPBr as intercalated salts between the layers through the use of an intermediate, a kaolinite-dimethylsulfoxide (DMSO) intercalation compound (Kaol-DMSO). The experimental data through complementary techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, solid-state C and Si nuclear magnetic resonance (NMR) spectroscopy with cross polarization and magic angle spinning, inductively coupled plasma emission spectrometry, and ion chromatography, indicate complete removal of DMSO and intercalation of TBPBr with an increase in the basal spacing from 1.12 nm (Kaol-DMSO) to 1.53 nm (Kaol-TBPBr). In contrast to a similar intercalation compound, a kaolinite-tetrabutylammonium bromide (TBABr) intercalation compound (Kaol-TBABr) with a basal spacing of 1.51 nm, Kaol-TBPBr displayed interesting features such as enhanced thermal stabilities as well as bold resistance against several solvents. Kaol-TBPBr withstood thermal decomposition of the organic species over 100 °C much better than Kaol-TBABr. When Kaol-TBPBr and Kaol-TBABr were refluxed in methanol, ethanol, acetone, or toluene for 1 day, Kaol-TBPBr preserved the expanded kaolinite layers, while the Kaol-TBABr structure completely collapsed due to the release of TBABr. Thus, with these particular and unique features of Kaol-TBPBr, organophosphonium salts appear to be promising guest species for intercalation chemistry of kaolinite.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b02375DOI Listing

Publication Analysis

Top Keywords

intercalation compound
20
kaolinite-tetrabutylphosphonium bromide
8
dmso intercalation
8
basal spacing
8
intercalation
7
kaol-tbpbr
7
compound
5
preparation comparative
4
comparative stability
4
stability kaolinite-tetrabutylphosphonium
4

Similar Publications

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

2,4-Dichlorophenoxyacetic Acid in the Gas and Crystal Phases and Its Intercalation in Montmorillonite-An Experimental and Theoretical Study.

Molecules

January 2025

Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Consejo Superior de Investigaciones Científicas, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.

Many properties of 2,4-dichlorophenoxyacetic acid (2,4-D) depend on its molecular environment, such as whether it is an isolated molecule, a dimer, or in a crystalline state. The molecular geometry, conformational analysis, and vibrational spectrum of 2,4-D were theoretically calculated using Density Functional Theory (DFT) methods. A new slightly more stable conformer was found, which is different to those previously reported.

View Article and Find Full Text PDF

Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.

View Article and Find Full Text PDF

In this study, the potential to modify the phase structure and morphology of manganese dioxide synthesized via the hydrothermal route was explored. A series of samples were prepared at different synthesis temperatures (100, 120, 140, and 160 °C) using KMnO and MnSO·HO as precursors. The phase composition and morphology of the materials were analyzed using various physicochemical methods.

View Article and Find Full Text PDF

A novel adsorbent ZnAl-LDHs/SiO (ZA/SiO) was prepared by blending urea mixture of ZnSO and Al(SO) while using SiO as a support form. The adsorption properties of ZA/SiO for the removal of toxic metal ions (Cu(II) and Cr(VI)) from water were evaluated. By batch experiment method to investigate the ZA/SiO adsorption of Cu(II) and Cr(VI) solution treatment effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!