The recent report of RBS-Seq to map simultaneously the epitranscriptomic modifications -methyladenosine, 5-methylcytosine, and pseudouridine () via bisulfite treatment of RNA provides a key advance to locate these important modifications. The locations of were found by a deletion signature generated during cDNA synthesis after bisulfite treatment for which the chemical details of the reaction are poorly understood. In the present work, the bisulfite reaction with was explored to identify six isomers of bisulfite adducted to . We found four of these adducts involved the heterocyclic ring, similar to the reaction with other pyrimidines. The remaining two adducts were bonded to the 1' carbon, which resulted in opening of the ribose ring. The utilization of complementary 1D- and 2D-NMR, Raman, and electronic circular dichroism spectroscopies led to the assignment of the two ribose adducts being the constitutional isomers of an - and an -adduct of bisulfite to the ribose, and these are the final products after heating. A mechanistic proposal is provided to rationalize chemically the formation and stereochemistries of all six isomeric bisulfite adducts to ; conversion of intermediate adducts to the two final products is proposed to involve E2, S2', and [2,3]-sigmatropic shift reactions. Lastly, a synthetic RNA template with at a known location was treated with bisulfite, leading to a deletion signature after reverse transcription, supporting the RBS-Seq report. This classical bisulfite reaction used for epigenomic and epitranscriptomic sequencing diverges from the C nucleoside to form stable bisulfite end products that yield signatures for next-generation sequencing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6817977 | PMC |
http://dx.doi.org/10.1021/jacs.9b08630 | DOI Listing |
Int J Mol Sci
December 2024
Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy.
The MCF-7R breast cancer cell line, developed by treating the parental MCF-7 cells with increasing doses of doxorubicin, serves as a model for studying acquired multidrug resistance (MDR). MDR is a major challenge in cancer therapy, often driven by overexpression of the efflux pump P-glycoprotein (P-gp) and epigenetic modifications. While many P-gp inhibitors show promise in vitro, their nonspecific effects on the efflux pump limit in vivo application.
View Article and Find Full Text PDFElectrophoresis
January 2025
Forensic Sciences Laboratory, Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, Terni, Italy.
The increasing interest in DNA methylation (DNAm) analysis within the forensic scientific community prompted a collaborative project by Ge.F.I.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, China.
Background: Atezolizumab plus bevacizumab has shown promising efficacy in advanced mucosal melanoma in the multi-centre phase II study. This report updates 3-year survival outcomes and multi-omics analysis to identify potential response biomarkers.
Methods: Forty-three intention-to-treat (ITT) patients received intravenous administration of atezolizumab and bevacizumab every 3 weeks.
Clin Biochem
January 2025
Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montréal, Québec, Canada. Electronic address:
Background And Aims: Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the two main causes of severe hypertriglyceridemia (sHTG). FCS is a rare autosomal recessive form of sHTG, whereas MCS is mainly polygenic in nature with both common and rare variants accumulating and leading to sHTG. However, 30 to 50% of MCS patients have no identified genetic cause of sHTG.
View Article and Find Full Text PDFJ Org Chem
January 2025
Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
Herein, an efficient electrochemical three-component C-H functionalization of indoles with sodium bisulfite and alcohols is described, providing a sustainable and convenient synthetic route for the construction of structurally valuable indole-containing sulfonate esters in moderate to good yields. This protocol proceeds in an undivided cell without any metal catalysts or oxidants, features a broad substrate scope, and has an excellent functional group tolerance. Preliminary mechanistic studies suggest that a radical-radical pathway may be involved in this three-component reaction system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!