Purpose: To evaluate a scintillator detector for patient-specific quality assurance of VMAT radiosurgery plans.
Methods: The detector was comprised of a 1 mm diameter, 1 mm high scintillator coupled to an acrylic optical fiber. Sixty VMAT SRS plans for treatment of single targets having sizes ranging from 3 mm to 30.2 mm equivalent diameter (median 16.3 mm) were selected. The plans were delivered to a 20 cm × 20 cm x 15 cm water equivalent plastic phantom having either the scintillator detector or radiochromic film at the center. Calibration films were obtained for each measurement session. The films were scanned and converted to dose using a 3-channel technique.
Results: The mean difference between scintillator and film was -0.45% (95% confidence interval -0.1% to 0.8%). For target equivalent diameter smaller than the median, the mean difference was 1.1% (95% confidence interval 0.5% to 1.7%). For targets larger than the median, the mean difference was -0.2% (95% confidence interval -0.7% to 0.1%).
Conclusions: The scintillator detector response is independent of target size for targets as small as 3 mm and is well-suited for patient-specific quality assurance of VMAT SRS plans. Further work is needed to evaluate the accuracy for VMAT plans that treat multiple targets using a single isocenter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753731 | PMC |
http://dx.doi.org/10.1002/acm2.12705 | DOI Listing |
Sci Rep
January 2025
REQUIMTE, NOVA School of Science and Technology, University New of Lisbon, Caparica, 2829-516, Portugal.
The presented work is dedicated to the detection of hydrogen, using detectors based on a MAPD (Micropixel Avalanche Photodiode) array based on new MAPD-3NM-2 type photodiodes and two different scintillators (LaBr(Ce) and LSO(Ce)). The physical parameters of the MAPD photodiode used in the study and the intrinsic background of the scintillators were investigated. For the 2.
View Article and Find Full Text PDFAppl Radiat Isot
March 2025
Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India.
This study shows an implementation of neutron-gamma pulse shape discrimination (PSD) using a two-dimensional convolutional neural network. The inputs to the network are snapshots of the unprocessed, digitized signals from a BC501A detector. By exposing a BC501A detector to a Cf-252 source, neutron and gamma signals were collected to create a training dataset.
View Article and Find Full Text PDFEJNMMI Phys
January 2025
Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 12th Avenue N, Sherbrooke, J1H 5N4, Québec, Canada.
Background: The renewed interest in BGO scintillators for TOF-PET is driven by the improved Cherenkov photon detection with new blue-sensitive SiPMs. However, the slower scintillation light from BGO causes significant time walk with leading edge discrimination (LED), which degrades the coincidence time resolution (CTR). To address this, a time walk correction (TWC) can be done by using the rise time measured with a second threshold.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (the Republic of).
This study aims to enhance positron emission tomography (PET) imaging systems by developing a continuous depth-of-interaction (DOI) measurement technique using a single-ended readout. Our primary focus is on reducing the number of readout channels in the scintillation detectors while maintaining accurate DOI estimations, using a high-pass filter-based signal multiplexing technique combined with artificial neural networks (ANNs). Approach: Instead of reading out all 64 signals from an 8×8 silicon photomultiplier array for DOI estimation, the proposed method technique reduces the signals into just four channels by applying high-pass filters with different time constants.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
(1) Background: Ultra-high dose rate (UHDR) radiation therapy needs a reliable dosimetry solution and scintillation detectors are promising candidates. In this study, we characterized an inorganic powder-based scintillation detector under a 9 MeV UHDR electron beam. (2) Methods: A mixture of ZnS:Ag powder and optic glue was coupled to an 8 m Eska GH-4001-P polymethyl methacrylate (PMMA) optical fiber.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!