Se-Assisted Performance Enhancement of CuZnSn(S,Se) Quantum-Dot Sensitized Solar Cells via a Simple Yet Versatile Synthesis.

Inorg Chem

Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University, Kaifeng 475004 , China.

Published: October 2019

The earth-abundant CuZnSnS (CZTS) quantum dots (QDs) have emerged as one potential substitute to toxic cadmium or rare indium QDs, but their application in quantum dot-sensitized solar cells (QDSSCs) is still limited by the improper particle size and the rigorous synthesis and ligand exchange conditions. Herein, we developed a one-pot hot injection method by using Tri-n-octylphosphine oxide (TOPO) as the solvent and oleylamine as the capping agent to synthesize CuZnSn(S,Se) (CZTSSe) QDs with adjustable size and narrow size distribution. The key feature of this approach is that we can take advantage of the high-temperature nucleation, low-temperature growth, and strong reducibility of NaHB to prepare small-sized CZTSSe QDs without using 1-dodecanethiol (DDT) and to extend the light harvesting range through Se incorporation. After Se incorporation, it turns out that the conduction band (CB) level of CZTSSe QDs decreases, implying that the injection driving force of the electron to the CB of TiO films becomes weaker and a larger recombination would be induced at the TiO/QDs/electrolyte interface. Benefiting from the broadened optoelectronic response range, the induced higher (16.80 vs 14.13 mA/cm) finally leads to the increase of the conversion efficiency of CZTSSe QDSSC from 3.17% to 3.54% without further modification. Despite the fact that the efficiency is still far behind those of literature reported values through use of other chalcogenide sensitizers, this DDT-free approach solves the main hindrance for the application of CZTSSe QDs in QDSSCs and holds a more convenient way for ligand exchange, light absorption improvement, and particle size control.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b02154DOI Listing

Publication Analysis

Top Keywords

cztsse qds
16
solar cells
8
particle size
8
ligand exchange
8
qds
6
cztsse
5
se-assisted performance
4
performance enhancement
4
enhancement cuznsnsse
4
cuznsnsse quantum-dot
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!