The trinuclear complexes [{PdI2(pyCl)}3(L1)] C1 and [{PdI2(pyCl)}3(L2)] C2, where pyCl = 3-chloropyridine, L1 = methyl(cyclotriguaiacylenyl)methylbenzimidazol-2-ylidene and L2 = benzyl(cyclotriguaiacylenyl)methylbenzimidazol-2-ylidene, each feature three palladium N-heterocyclic carbene (NHC) centres tethered onto a host-type cyclotriguaiacylene scaffold. Crystal structures of different solvates of complex C1 reveal different host-guest motifs including intra-cavity binding of dioxane guests concomitant with intramolecular halogen bonding interactions of C1. Mononuclear NHC analogues of C1 and C2, namely [PdI2(pyCl)(L3)] C3 and [PdI2(pyCl)(L4)] C4, where L3 = (3-chloropyridyl)-1-(2-methoxyphenyoxy)methyl-3-methylbenzimidazol-2-ylidene and L4 = (3-chloropyridyl)-1-(2-methoxyphenyoxy)methyl-3-benzylbenzimidazol-2-ylidene, were also synthesised and their crystal structures determined. Complexes C1-C4 are competent catalysts for Suzuki Miyaura cross-coupling, and interestingly exhibit a switch in the normal regioselectivity observed for reactions of 2,4-dibromopyridine with aryl boronic acids, usually C2-selective, yielding C4-arylated product preferentially over C2-arylated product.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt03400eDOI Listing

Publication Analysis

Top Keywords

crystal structures
8
cyclotriveratrylene-tethered trinuclear
4
trinuclear palladiumii-nhc
4
palladiumii-nhc complexes
4
complexes reversal
4
reversal site
4
site selectivity
4
selectivity suzuki-miyaura
4
suzuki-miyaura reactions
4
reactions trinuclear
4

Similar Publications

Recently, we reported on the simple, scalable synthesis of quantum-confined one-dimensional (1D) lepidocrocite titanate nanofilaments (1DLs). Herein, we show, using solid-state UV-vis spectroscopy, that reducing the concentration of aqueous 1DL colloidal suspensions from 40 to 0.01 g/L increases the band gap energy and light absorption onset of dried filtered films from ≈3.

View Article and Find Full Text PDF

NIR-Reflective Black Photonic Films Designed for Effective LiDAR Recognition.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.

View Article and Find Full Text PDF

The use of active packaging made from biodegradable polymers can contribute to the environment and to the food industry by increasing the shelf life of their products. This study aimed to produce chitosan-based films incorporated with the invertase enzyme (1, 2, 5, 9, and 10 %) as an alternative to avoid sucrose crystallization in the confectionery industry. The optimum activity of the invertase enzyme was observed at 55 °C and pH 5, thus, the films made with the film-forming solution adjusted to pH 5 and dried at 55 °C were compared with those without pH adjustment and dried at room temperature.

View Article and Find Full Text PDF

A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.

View Article and Find Full Text PDF

Crystal structure of the anti-CRISPR protein AcrIE7.

Biochem Biophys Res Commun

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!