Aims: To test whether neurite-inhibitory plasma autoantibodies in chronic schizophrenia activate Gq/11- and Gi- coupled signaling pathways downstream of 5-hydroxytryptamine 2A receptor activation; and for modulation of serotonergic signaling by the metabotropic 2/3 receptor agonist LY379268.

Methods: Plasma from five older adults with chronic schizophrenia and eight age-matched patients having another neuropsychiatric, immune or metabolic disorder was subjected to Protein-A affinity chromatography to obtain IgG autoantibodies. Mean neurite retraction (5 minutes) or cell survival (24 hours) was determined in mouse N2A neuroblastoma cells incubated with autoantibodies in the presence or absence of specific antagonists of the Gq/11/PLC/IP3R signaling pathway, Gi-coupled, beta-arrestin2-directed pathways, or LY379268.

Results: Chronic schizophrenia plasma autoantibodies- mediated dose- and time-dependent acute N2A neurite retraction was completely prevented by M100907, a selective 5-hydroxytryptamine 2A receptor antagonist. LY379268 promoted autoantibody-induced neurite retraction causing a shift-to-the-left in the dose-response curve. Antagonists of the RhoA/Rho kinase and Gq/11/PLC/IP3R signaling pathways blocked autoantibody-mediated neurite retraction. Chronic schizophrenia plasma autoantibodies mediated increased N2A cell survival which was blocked by LY379268, pertussis toxin, and antagonists of PI3-kinase- mediated survival signaling.

Conclusion: Schizophrenia plasma autoantibodies activate the 5-hydroxytryptamine 2A receptor positively coupled to Gq/11/PLC/IP3R pathway and RhoA/Rho kinase signaling activation in promoting acute N2A cell neurite retraction. Autoantibodies in a subset of patients experiencing hallucinations promoted increased N2A cell survival mediated (in part) via a pertussis-toxin sensitive, Gi-coupled, PI3-kinase-dependent mechanism. Positive modulation of 5-HT2AR-mediated neurite retraction by LY379268 suggests the autoantibodies may target (in part) the 5-HT2AR/mGlu2R heteromer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751558PMC

Publication Analysis

Top Keywords

neurite retraction
24
schizophrenia plasma
16
plasma autoantibodies
16
5-hydroxytryptamine receptor
16
chronic schizophrenia
16
cell survival
12
n2a cell
12
autoantibodies
8
2/3 receptor
8
signaling pathways
8

Similar Publications

Structural insights into the engagement of lysophosphatidic acid receptor 1 with different G proteins.

J Struct Biol

December 2024

Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.

View Article and Find Full Text PDF

The ataxia-telangiectasia disease protein ATM controls vesicular protein secretion via CHGA and microtubule dynamics via CRMP5.

Neurobiol Dis

December 2024

Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany. Electronic address:

The autosomal recessive disease ataxia-telangiectasia (A-T) presents with cerebellar degeneration, immunodeficiency, radiosensitivity, capillary dilatations, and pulmonary infections. Most symptoms outside the nervous system can be explained by failures of the disease protein ATM as a Ser/Thr-kinase to coordinate DNA damage repair. However, ATM in adult neurons has cytoplasmic localization and vesicle association, where its roles remain unclear.

View Article and Find Full Text PDF

Neurite initiation from newly born neurons is a critical step in neuronal differentiation and migration. Neuronal migration in the developing cortex is accompanied by dynamic extension and retraction of neurites as neurons progress through bipolar and multipolar states. However, there is a relative lack of understanding regarding how the dynamic extension and retraction of neurites is regulated during neuronal migration.

View Article and Find Full Text PDF

A Pro-Inflammatory Stimulus versus Extensive Passaging of DITNC1 Astrocyte Cultures as Models to Study Astrogliosis.

Int J Mol Sci

August 2024

Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.

Astrogliosis is a process by which astrocytes, when exposed to inflammation, exhibit hypertrophy, motility, and elevated expression of reactivity markers such as Glial Fibrillar Acidic Protein, Vimentin, and Connexin43. Since 1999, our laboratory in Chile has been studying molecular signaling pathways associated with "gliosis" and has reported that reactive astrocytes upregulate Syndecan 4 and αβ Integrin, which are receptors for the neuronal glycoprotein Thy-1. Thy-1 engagement stimulates adhesion and migration of reactive astrocytes and induces neurons to retract neurites, thus hindering neuronal network repair.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a prolific human herpesvirus that infects most individuals by adulthood. While typically asymptomatic in adults, congenital infection can induce serious neurological symptoms including hearing loss, visual deficits, cognitive impairment, and microcephaly in 10-15% of cases. HCMV has been shown to infect most neural cells with our group recently demonstrating this capacity in stem cell-derived forebrain neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!