Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish, the olive flounder (Paralichthys olivaceus).

Reprod Fertil Dev

Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and Corresponding author. Email:

Published: October 2019

As an important maricultured fish, the olive flounder Paralichthys olivaceus shows sex-dimorphic growth. Thus, the molecular mechanisms involved in sex control in P. olivaceus have attracted researchers' attention. Among the sex-related genes, forkhead box protein L2 (foxl2) exhibits significant sex-dimorphic expression patterns and plays an important role in fish gonad differentiation and development. The present study first investigated the expression levels and promoter methylation dynamics of foxl2 during flounder gonad differentiation under treatments of high temperature and exogenous 17β-oestradiol (E2). During high temperature treatment, the expression of flounder foxl2 may be repressed via maintenance of DNA methylation. Then, flounder with differentiated testis at Stages I-II were treated with exogenous 5ppm E2 or 5ppm E2+150ppm trilostane (TR) to investigate whether exogenous sex hormones could induce flounder sex reversal. The differentiated testis exhibited phenotypic variations of gonadal dysgenesis with upregulation of female-related genes (foxl2 and cytochrome P450 family 19 subfamily A (cyp19a)) and downregulation of male-related genes (cytochrome P450 family 11 subfamily B member 2 (cyp11b2), doublesex- and mab-3 related transcription factor 1 (dmrt1), anti-Mullerian hormone (amh) and SRY-box transcription factor 9 (sox9)). Furthermore, a cotransfection assay of the cells of the flounder Sertoli cell line indicated that Foxl2 was able alone or with nuclear receptor subfamily 5 group A member 2 (Nr5a2) jointly to upregulate expression of cyp19a. Moreover, Foxl2 and Nr5a2 repressed the expression of dmrt1. In summary, Foxl2 may play an important role in ovarian differentiation by maintaining cyp19a expression and antagonising the expression of dmrt1. However, upregulation of foxl2 is not sufficient to induce the sex reversal of differentiated testis.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD18233DOI Listing

Publication Analysis

Top Keywords

gonad differentiation
12
differentiated testis
12
foxl2
9
forkhead box
8
box protein
8
protein foxl2
8
fish olive
8
olive flounder
8
flounder paralichthys
8
paralichthys olivaceus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!