Cell replacement therapy is a promising treatment strategy for Parkinson's disease (PD); however, the poor survival rate of transplanted neurons is a critical barrier to functional recovery. In this study, we used self-assembling peptide nanofiber scaffolds (SAPNS) based on the peptide RADA16-I to support the maturation and post-transplantation survival of encapsulated human dopaminergic (DA) neurons derived from induced pluripotent stem cells. Neurons encapsulated within the SAPNS expressed mature neuronal and midbrain DA markers and demonstrated functional activity similar to neurons cultured in two dimensions. A microfluidic droplet generation method was used to encapsulate cells within monodisperse SAPNS microspheres, which were subsequently used to transplant adherent, functional networks of DA neurons into the striatum of a 6-hydroxydopamine-lesioned PD mouse model. SAPNS microspheres significantly increased the survival of encapsulated neurons compared with neurons transplanted in suspension, and they enabled significant recovery in motor function compared with control lesioned mice using approximately an order of magnitude fewer neurons than have been previously needed to demonstrate behavioral recovery. These results indicate that such biomaterial scaffolds can be used as neuronal transplantation vehicles to successfully improve the outcome of cell replacement therapies for PD. Impact Statement Transplantation of dopaminergic (DA) neurons holds potential as a treatment for Parkinson's disease (PD), but low survival rates of transplanted neurons is a barrier to successfully improving motor function. In this study, we used hydrogel scaffolds to transplant DA neurons into PD model mice. The hydrogel scaffolds enhanced survival of the transplanted neurons compared with neurons that were transplanted in a conventional manner, and they also improved recovery of motor function by using significantly fewer neurons than have typically been transplanted to see functional benefits. This cell transplantation technology has the capability to improve the outcome of neuron transplantation therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044800PMC
http://dx.doi.org/10.1089/ten.TEA.2019.0094DOI Listing

Publication Analysis

Top Keywords

neurons
15
dopaminergic neurons
12
transplanted neurons
12
motor function
12
human dopaminergic
8
cell replacement
8
parkinson's disease
8
survival encapsulated
8
sapns microspheres
8
neurons compared
8

Similar Publications

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

This is an outline for a podcast. Parkinson's Disease (PD) is a progressive neurodegenerative disease in which there is increasing loss of dopamine neurones from the basal ganglia (Simon et al. Clin Geriatr Med.

View Article and Find Full Text PDF

P2YR-IGFBP2 signaling: new contributor to astrocyte-neuron communication.

Purinergic Signal

January 2025

International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.

View Article and Find Full Text PDF

Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates.

Nano Converg

January 2025

Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.

The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!