Neurodegeneration with brain iron accumulation (NBIA) comprises a group of rare genetic disorders characterized by progressive extrapyramidal and other neurological symptoms due to focal iron accumulation in the basal ganglia (Adidi et al., 2016). β-Propeller protein-associated neurodegeneration (BPAN) is the most recently identified subtype of NBIA caused by heterozygous variants in WDR45 (OMIM: *300526) at Xp11.23. We report the clinical neurophysiological and neuro-imaging findings of a new subtype of BPAN in a 6 year-old female patient, who was identified to have a large de novo WDR45 deletion who presented in the first year of life with early onset global developmental delay, severe cognitive impairment, generalized hypotonia and a corticosteroid responsive epileptic encephalopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmg.2019.103765 | DOI Listing |
Talanta
January 2025
Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China; Department of Neurology, Ningbo Medical Center Li Huili Hospital, The Affiliated Li Huili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China; Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China. Electronic address:
The considerable abundance and remarkable stability of sEVs provide substantial benefits for diagnosing Alzheimer's disease. Therefore, precise tracking subtypes of small extracellular vesicles (sEVs) is crucial for screening novel diagnostic biomarkers and developing therapeutic technologies. We propose a three-target recognition-mediated proximity ligation assay for the precise identification of sEV subtypes utilizing three specifically designed probes: one for the exosomal surface protein CD63 recognition, one for fixing the biolipid layer, and the third for the identification of distinctive protein associated with a specific subtype of sEVs (L1CAM positive sEVs).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, Lavrentiev Av. 10, 630090 Novosibirsk, Russia.
Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
Objectives: To explore the effects of puerarin on renal ischemia/reperfusion injury and the possible mechanism.
Materials And Methods: The experimental mice were injected with puerarin (50 or 100 mg/kg) per day or equal sterile saline by intraperitoneal injection for one week, and a renal I/R injury model was constructed. HK-2 cells were incubated with puerarin (1 uM and 10 uM) before the H/R model.
J Cardiothorac Surg
January 2025
Kocaeli University Medical Faculty, Department of Thoracic Surgery, Kocaeli, Turkey.
Background: Lung cancer is the leading cause of cancer-related deaths worldwide. Therefore, the search for new biomarkers continues in order to diagnose lung cancer at an early stage. In this study, we investigated blood levels of G-protein associated membrane estrogen receptor (GPER)-1 and Raftlin as markers of early-stage in lung cancer.
View Article and Find Full Text PDFJ Invest Dermatol
January 2025
Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China. Electronic address:
Tissue factor pathway inhibitor 2 (TFPI2) is known to regulate the proliferation of various cell types and tumor tissues; however, its role in the process of skin aging has not been elucidated. In this study, we identify TFPI2 as a potential antagonist of aging. Our findings indicate that TFPI2 expression is downregulated in aging skin tissues and senescent human dermal fibroblasts (HDFs), and that the depletion of TFPI2 accelerates the senescence of HDFs and the aging of skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!