This study analyzed ammonia reduction potential and related costs and benefits of several ammonia emission reduction technologies applicable for dairy production from cattle in China. Specifically, these included diet manipulation, manure acidification, manure/slurry covers, and solid manure compaction. Ammonia emissions for China were estimated using the GAINS and NUFER models, while mitigation potentials of technologies were determined from laboratory studies. Ammonia reduction potentials from dairy production in China ranged from 0.8 to 222 Gg NH year for the selected technologies. Implementation costs ranged from a savings of US$15 kg NH abated to an expenditure of US$45 kg NH abated, while the total implementation costs varied from a savings of US$1.5 billion in 2015 to an expenditure of a similar size. The best NH reduction technology was manure acidification, while the most cost-effective option was diet optimization with lower crude protein input. For most abatement options, material costs were the critical element of overall costs. The fertilizer value of manure could partly offset the implementation cost of the options tested. Furthermore, benefits due to avoided health damage, as a result of reducing NH emissions, could make all abatement options (except for manure compaction) profitable on the scale of a national economy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.9b04284 | DOI Listing |
Environ Int
January 2025
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Estimating PM exposure and its health impacts in cities involves large uncertainty due to the limitations of model resolutions. Consequently, attributing the sources of PM-related health impacts at the city level remains challenging. We characterize the health impacts associated with chronic PM exposure and anthropogenic emissions in Shanghai using a chemical transport model (GEOS-Chem) and its adjoint.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:
In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
January 2025
Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.
The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Agricultural Resources and Environment Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
Ammonia (NH) volatilization caused by urea application has negative implications for human health, environmental quality, and the value of nitrogen fertilizers. It remains to be investigated how management strategies should be adopted to not only reduce NH volatilization but also improve nitrogen use efficiency (NUE) in the agriculture industry at present. Hence, a two-year field trial, including subplots, was conducted to simultaneously evaluate the effects of mulching treatments (NM: non-mulching; SM: straw mulching) and different fertilizer treatments (U: urea; U + NBPT: urea plus 1% N-(n-butyl) thiophosphoric triamide; U + CRU: the mixture of urea and controlled-release urea at a 3:7 ratio; U + OF: urea plus commercial organic fertilizer at a 3:7 ratio) on NH volatilization, crop production, and NUE in an oilseed rape-maize rotation system in the sloping farmland of purple soil in southwestern China between 2021 and 2023.
View Article and Find Full Text PDFLuminescence
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!