Aim: Respiratory distress syndrome is a common condition among preterm neonates, and assessing lung aeration assists in diagnosing the disease and helping to guide and monitor treatment. We aimed to identify and analyse the tools available to assess lung aeration in neonates with respiratory distress syndrome.
Methods: A systematic review and narrative synthesis of studies published between January 1, 2004, and August 26, 2019, were performed using the OVID Medline, PubMed, Embase and Scopus databases.
Results: A total of 53 relevant papers were retrieved for the narrative synthesis. The main tools used to assess lung aeration were respiratory function monitoring, capnography, chest X-rays, lung ultrasound, electrical impedance tomography and respiratory inductive plethysmography. This paper discusses the evidence to support the use of these tools, including their advantages and disadvantages, and explores the future of lung aeration assessments within neonatal intensive care units.
Conclusion: There are currently several promising tools available to assess lung aeration in neonates with respiratory distress syndrome, but they all have their limitations. These tools need to be refined to facilitate convenient and accurate assessments of lung aeration in neonates with respiratory distress syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apa.15028 | DOI Listing |
Cell Biochem Biophys
January 2025
Department of Pain, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
This study aimed to observe the mechanism of hydrogen (H) in a lung transplantation model simulated by pulmonary microvascular endothelial cells (PMVECs), which were divided into 5 groups. The blank group was the normal PMVECs. During cold ischemia period, PMVECs in the control, O, or H groups were aerated with no gas, O, or 3% H, and 3% H after transfected with a small interfering RNA targeting Nrf2 in the H+si-Nrf2 group.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
Introduction: Positive end-expiratory pressure (PEEP) and prone positioning can improve gas exchange by promoting uniform lung aeration. However, elevated ventilation pressures may increase intracranial pressure (ICP) and disrupt cerebral autoregulation. This study investigated the effects of PEEP on ICP and cerebral autoregulation in a porcine model with healthy lungs and normal ICP, comparing prone and supine positions.
View Article and Find Full Text PDFPediatr Res
January 2025
The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
Background: Very preterm infants often require respiratory support after birth with current recommendations suggesting the use of continuous positive airway pressure (CPAP) of 4-8 cmHO and an initial fraction of inspired oxygen (FiO) of 0.21-0.3.
View Article and Find Full Text PDFCurr Opin Crit Care
January 2025
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, University of Milan, Milan, Italy.
Purpose Of Review: The increasing use of prone position, in intubated patients with acute respiratory distress syndrome as well as in patients with acute hypoxemic respiratory failure receiving noninvasive respiratory support, mandates a better definition and monitoring of the response to the manoeuvre. This review will first discuss the definition of the response to prone positioning, which is still largely based on its effect on oxygenation. We will then address monitoring respiratory and hemodynamic responses to prone positioning in intubated patients.
View Article and Find Full Text PDFArXiv
January 2025
Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, 91125, CA, United States.
Lung ultrasound is a growing modality in clinics for diagnosing and monitoring acute and chronic lung diseases due to its low cost and accessibility. Lung ultrasound works by emitting diagnostic pulses, receiving pressure waves and converting them into radio frequency (RF) data, which are then processed into B-mode images with beamformers for radiologists to interpret. However, unlike conventional ultrasound for soft tissue anatomical imaging, lung ultrasound interpretation is complicated by complex reverberations from the pleural interface caused by the inability of ultrasound to penetrate air.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!