We present a micrometer-scale, on-chip integrated, plasmonic enhanced graphene photodetector (GPD) for telecom wavelengths operating at zero dark current. The GPD is designed to directly generate a photovoltage by the photothermoelectric effect. It is made of chemical vapor deposited single layer graphene, and has an external responsivity ∼12.2 V/W with a 3 dB bandwidth ∼42 GHz. We utilize Au split-gates to electrostatically create a p-n-junction and simultaneously guide a surface plasmon polariton gap-mode. This increases the light-graphene interaction and optical absorption and results in an increased electronic temperature and steeper temperature gradient across the GPD channel. This paves the way to compact, on-chip integrated, power-efficient graphene based photodetectors for receivers in tele- and datacom modules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b02238DOI Listing

Publication Analysis

Top Keywords

plasmonic enhanced
8
enhanced graphene
8
on-chip integrated
8
waveguide-integrated plasmonic
4
graphene
4
graphene photodetectors
4
photodetectors micrometer-scale
4
micrometer-scale on-chip
4
integrated plasmonic
4
graphene photodetector
4

Similar Publications

Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror.

Nano Lett

January 2025

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.

View Article and Find Full Text PDF

The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.

View Article and Find Full Text PDF

The widespread adoption and commercialization of lateral flow assays (LFAs) for clinical diagnosis have been hindered by limitations in sensitivity, specificity, and the absence of quantitative data. To address these challenges, we developed aptamer-architectured gold nanoparticles as nanozymes that catalytically convert -phenylenediamine (PPD) into Bandrowski's base (BB), thereby amplifying signal strength and sensitivity. The physiochemical properties of the nanozymes were characterized and their specific binding efficiency was demonstrated using experimental studies.

View Article and Find Full Text PDF

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).

View Article and Find Full Text PDF

Gold-Mercury-Platinum Alloy for Light-Enhanced Electrochemical Detection of Hydrogen Peroxide.

Sensors (Basel)

December 2024

Center for Experimental Chemistry Education of Shandong University, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold-mercury-platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!