AI Article Synopsis

  • The study investigated how TCDD, a compound activating the aryl hydrocarbon receptor (AhR), affects the growth and survival of undifferentiated human liver progenitor cells (HepaRG).
  • TCDD was found to promote cell proliferation in normal HepaRG cells, but in cells with silenced YAP and TAZ genes, it triggered increased apoptosis instead.
  • The results imply that AhR activation influences both the growth and death pathways in liver progenitor cells, making them more susceptible to apoptosis while altering various signaling pathways related to cell growth and differentiation.

Article Abstract

The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfz202DOI Listing

Publication Analysis

Top Keywords

liver progenitors
20
heparg cells
20
undifferentiated heparg
16
cell proliferation
12
signaling pathways
12
cells
10
proliferation apoptosis
8
human model
8
adult liver
8
ahr activation
8

Similar Publications

Background: For the treatment of liver fibrosis, several novel cell therapies have been proposed. Autologous macrophage therapy has been reported as one of the promising treatments. So far, most studies have used colony-stimulating factor 1 (CSF-1) to induce the differentiation of macrophage progenitor cells.

View Article and Find Full Text PDF

Lysosomal stress due to the accumulation of nucleic acids (NAs) activates endosomal TLRs in macrophages. Here, we show that lysosomal RNA stress, caused by the lack of RNase T2, induces macrophage accumulation in multiple organs such as the spleen and liver through TLR13 activation by microbiota-derived ribosomal RNAs. TLR13 triggered emergency myelopoiesis, increasing the number of myeloid progenitors in the bone marrow and spleen.

View Article and Find Full Text PDF

Over the past two decades, research has increasingly focused on the interactions between diet, gut microbiota, and host organisms. Recent evidence suggests that tryptophan, an essential amino acid, can be metabolized by gut microbiota into indoles, which have significant biological effects. However, most research is limited to indole and its liver metabolite, indoxyl sulfate.

View Article and Find Full Text PDF

Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.

View Article and Find Full Text PDF

Prenatal PM exposure affects embryonic hematopoietic development through SOX2-regulated gene expression.

J Hazard Mater

January 2025

Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China. Electronic address:

Fine particulate matter (PM) is one of the most concerning air pollutants, with emerging evidence indicating that it can negatively impact embryonic development and lead to adverse birth outcomes. Hematopoiesis is a critical process essential for the survival and normal development of the embryo, consisting of three temporally overlapping stages and involving multiple hematopoietic loci, including the yolk sac and fetal liver. Therefore, we hypothesized that abnormal embryonic hematopoietic development can significantly influence developmental outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!