Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Intrafractional motion can cause substantial uncertainty in precision radiotherapy. Traditionally, the target volume is defined to be sufficiently large to cover the tumor in every position. With the robotic treatment couch, a real-time motion compensation can improve tumor coverage and organ at risk sparing. However, this approach poses additional requirements, which are systematically developed and which allow the ideal robotic couch to be specified.
Methods And Materials: Data of intrafractional tumor motion were collected and analyzed regarding motion range, frequency, speed, and acceleration. Using this data, ideal couch requirements were formulated. The four robotic couches Protura, Perfect Pitch, RoboCouch, and RPSbase were tested with respect to these requirements.
Results: The data collected resulted in maximum speed requirements of 60 mm/s in all directions and maximum accelerations of 80 mm/s in the longitudinal, 60 mm/s in the lateral, and 30 mm/s in the vertical direction. While the two robotic couches RoboCouch and RPSbase completely met the requirements, even these two showed a substantial residual motion (40% of input amplitude), arguably due to their time delays.
Conclusion: The requirements for the motion compensation by an ideal couch are formulated and found to be feasible for currently available robotic couches. However, the performance these couches can be improved further regarding the position control if the demanded speed and acceleration are taken into account as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806475 | PMC |
http://dx.doi.org/10.1002/acm2.12731 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!