Formalin-fixed, paraffin-embedded (FFPE) samples are generally used for histology-study, however, they also possess important molecular diagnostics information. While it has been reported that the N-glycan moieties of glycoproteins is not affected by the FFPE process, no information is available about the effect of the elapsed time between sampling and fixation on the resulting N-glycosylation profile. In this study, lung, brain, heart, spleen, liver, kidney, and intestine mouse tissue specimens were used for N-glycan profiling analysis and the elapsed sampling time effect was investigated with the lung tissue. N-glycan extraction from the tissue samples was performed by glycoprotein retrieval from the FFPE specimens using radioimmunoprecipitation assay (RIPA) buffer followed PNGase F digestion. The released oligosaccharides were fluorophore labeled and analyzed by capillary electrophoresis-laser induced fluorescent detection (CE-LIF). N-glycosylation profiles of freshly collected lung-tissue samples (zero time point), as well as 1 and 2 h after sampling were compared by carbohydrate profiling and exoglycosidase treatment based deep glycomic analysis. It was found that up to two hours of room temperature storage of tissue specimens apparently did not cause changes in the N-glycosylation profiles of complex carbohydrates, but resulted in considerable decrease in the amount of linear glucose oligomers and high mannose type glycans present in the samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.201900109 | DOI Listing |
Calcif Tissue Int
January 2025
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.
This study aims to identify novel loci associated with sarcopenia-related traits in UK Biobank (UKB) through multi-trait genome-wide analysis. To identify novel loci associated with sarcopenia, we integrated the genome-wide association studies (GWAS) of usual walking pace (UWP) and hand grip strength (HGS) to conduct a joint association study known as multi-trait analysis of GWAS (MTAG). We performed a transcriptome-wide association study (TWAS) to analyze the results of MTAG in relation to mRNA expression data for genes identified in skeletal muscle.
View Article and Find Full Text PDFBackground: Single-nucleus RNA sequencing (snRNAseq) allows for the dissection of the cell type-specific transcriptional profiles of tissue specimens. In this study, we compared gene expression in multiple brain cell types in brain tissue from Alzheimer disease (AD) cases with no or other co-existing pathologies including Lewy body disease (LBD) and vascular disease (VaD).
Method: We evaluated differential gene expression measured from single nucleus RNA sequencing (snRNAseq) data generated from the hippocampus region tissue donated by 11 BU ADRC participants with neuropathologically confirmed AD with or without a co-existing pathology (AD-only = 3, AD+VaD = 6, AD+LBD = 2).
Alzheimers Dement
December 2024
Institute of Neuropathology, Fukushimura Hospital, Toyohashi, Japan.
Background: The Fukushimura (welfare village), located in Toyohashi city, Japan, is a unique complex of various nursing home facilities including dementia homes, Day-care houses, homes for disabled and mentally retarded, and the Fukushimura Hospital. This village is totally managed by private sector, the Sawarabi Medical Cooperative. About 800 elderly people reside in this area.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Stanford University, Stanford, CA, USA.
Background: Recent studies suggest that iron and neuroinflammation are key components of Alzheimer's Disease (AD) pathology. Ferrous Fe can cause oxidative stress and cellular toxicity, but it is unknown to what extent Fe is elevated in AD, in particular with the hippocampus. To answer this question, we quantified iron oxidation state in frozen human brain hippocampi.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kansas Medical Center, Kansas City, KS, USA.
Background: Understanding the proteomes of specific cell types within the brain is crucial for elucidating the mechanisms underlying Alzheimer's disease (AD). However, the isolation and analysis of these diverse and low-abundance cell populations remain significant challenges. This study aims to assess GeoMxTM Digital Spatial Profiler (DSP) by NanoString Technologies (NanoString, Seattle, USA) capable of spatially resolving protein expression profile of AD brains extracted from formalin-fixed paraffin-embedded (FFPE) specimens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!