Drought sensitivity of aboveground productivity in Leymus chinensis meadow steppe depends on drought timing.

Oecologia

Key Laboratory for Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, Jilin Province, People's Republic of China.

Published: November 2019

AI Article Synopsis

  • There’s limited knowledge on how severe climate events and ongoing environmental changes impact ecosystems.
  • This study examined how extreme droughts in spring and summer, along with nitrogen addition, affected grassland biomass in a specific meadow steppe in northeast China.
  • Spring drought significantly reduced plant biomass, while summer drought had no major impact, and nitrogen addition showed a potential but not definitive effect on biomass during drought.
  • Recovery from these droughts was observed to vary, with the effects of spring drought fading after a year, emphasizing the importance of the dominant plant species' traits in drought response.

Article Abstract

There is limited understanding of the combined effects of discrete climate extremes and chronic environmental changes on ecosystem processes and functioning. We assessed the interactions of extreme drought timing (45 days, in spring or summer) and nitrogen (N) addition in a full factorial field experiment in a Leymus chinensis-dominated meadow steppe in northeast China. We evaluated the resistance and recovery of the grassland (calculated in terms of aboveground biomass) to these two drought events. The spring drought reduced aboveground biomass by 28% in the unfertilized plots and by 33% in the fertilized plots, and the effects persisted during the subsequent post-drought period within the same growing season; however, the summer drought had no significant influence on aboveground biomass. Although there were no significant interactive effects between drought timing and N addition, we observed a potential trend of N addition increasing the proportion of aboveground biomass suppressed by spring drought but not summer drought. Moreover, the drought resistance of the aboveground biomass was positively correlated with the response of the belowground biomass to drought. One year after the extreme drought events, the spring drought effects on aboveground and belowground biomass were negligible. Our results indicate that the drought sensitivity of productivity likely depends on the phenological and morphological traits of the single highly dominant species (Leymus chinensis) in this meadow steppe.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-019-04506-wDOI Listing

Publication Analysis

Top Keywords

aboveground biomass
20
drought
14
meadow steppe
12
drought timing
12
spring drought
12
drought sensitivity
8
leymus chinensis
8
chinensis meadow
8
extreme drought
8
biomass drought
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!