The collective self-organization of cells into three-dimensional structures can give rise to emergent physical properties such as fluid behavior. Here, we demonstrate that tissues growing on curved surfaces develop shapes with outer boundaries of constant mean curvature, similar to the energy minimizing forms of liquids wetting a surface. The amount of tissue formed depends on the shape of the substrate, with more tissue being deposited on highly concave surfaces, indicating a mechano-biological feedback mechanism. Inhibiting cell-contractility further revealed that active cellular forces are essential for generating sufficient surface stresses for the liquid-like behavior and growth of the tissue. This suggests that the mechanical signaling between cells and their physical environment, along with the continuous reorganization of cells and matrix is a key principle for the emergence of tissue shape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739108PMC
http://dx.doi.org/10.1126/sciadv.aav9394DOI Listing

Publication Analysis

Top Keywords

tissue shape
8
tissue
5
surface tension
4
tension determines
4
determines tissue
4
shape growth
4
growth kinetics
4
kinetics collective
4
collective self-organization
4
self-organization cells
4

Similar Publications

The smallest plant from the Lower Devonian of South China and the divergent life-history strategies in zosterophyllopsids.

Proc Biol Sci

January 2025

The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China.

Plants have evolved different life-history strategies to overcome limited amounts of available resources; however, when and how divergent strategies of sexual reproduction evolved in early land plants are not well understood. As one of the notable and vital components of early terrestrial vegetation, the Zosterophyllopsida and its type genus reached maximum species diversity during the Pragian (Early Devonian; 410.8-407.

View Article and Find Full Text PDF

Simulations of the Potential for Diffraction Enhanced Imaging at 8 keV using Polycapillary Optics.

Biomed Phys Eng Express

January 2025

Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.

Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.

View Article and Find Full Text PDF

The physical and chemical properties of wild berry fruits change dramatically during development, and the ripe berries host species-specific endophytic communities. However, the development of fungal endophytic communities during berry ripening is unknown. We studied bilberries (Vaccinium myrtillus L.

View Article and Find Full Text PDF

Periodontal disease stands the leading cause of tooth loss in adults. While scaling and root planning is considered the "gold standard" treatment, it is often insufficient in efficiently eliminating anaerobic bacteria from deep periodontal pockets. In this work, an antibiotic-free and photo-curing hyaluronic acid-Janus (H-Janus) antibacterial pack was developed to inhibit the growth and colonization of residual bacteria within the pockets for reducing the recurrence of periodontitis.

View Article and Find Full Text PDF

Optimizing gelation time for cell shape control through active learning.

Soft Matter

January 2025

Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06510, USA.

Hydrogels are popular platforms for cell encapsulation in biomedicine and tissue engineering due to their soft, porous structures, high water content, and excellent tunability. Recent studies highlight that the timing of network formation can be just as important as mechanical properties in influencing cell morphologies. Conventionally, time-dependent properties can be achieved through multi-step processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!