AI Article Synopsis

Article Abstract

Coupling crop growth models and remote sensing provides the potential to improve our understanding of the genotype x environment x management (G × E × M) variability of crop growth on a global scale. Unfortunately, the uncertainty in the relationship between the satellite measurements and the crop state variables across different sites and growth stages makes it difficult to perform the coupling. In this study, we evaluate the effects of this uncertainty with MODIS data at the Mead, Nebraska Ameriflux sites (US-Ne1, US-Ne2, and US-Ne3) and accurate, collocated Hybrid-Maize (HM) simulations of leaf area index (LAI) and canopy light use efficiency (LUE). The simulations are used to both explore the sensitivity of the satellite-estimated genotype × management (G × M) parameters to the satellite retrieval regression coefficients and to quantify the amount of uncertainty attributable to site and growth stage specific factors. Additional ground-truth datasets of LAI and LUE are used to validate the analysis. The results show that uncertainty in the LAI/satellite measurement regression coefficients lead to large uncertainty in the G × M parameters retrievable from satellites. In addition to traditional leave-one-site-out regression analysis, the regression coefficient uncertainty is assessed by evaluating the retrieval performance of the temporal change in LAI and LUE. The weekly change in LAI is shown to be retrievable with a correlation coefficient absolute value (|r|) of 0.70 and root-mean square error (RMSE) value of 0.4, which is significantly better than the performance expected if the uncertainty was caused by random error rather than secondary effects caused by site and growth stage specific factors (an expected |r| value of 0.36 and RMSE value of 1.46 assuming random error). As a result, this study highlights the importance of accounting for site and growth stage specific factors in remote sensing retrievals for future work developing methods coupling remote sensing with crop growth models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750221PMC
http://dx.doi.org/10.3390/rs11161928DOI Listing

Publication Analysis

Top Keywords

site growth
16
growth stage
16
stage specific
16
specific factors
16
crop growth
16
growth models
12
remote sensing
12
growth
9
crop state
8
coupling crop
8

Similar Publications

Vaccinia growth factor-dependent modulation of the mTORC1-CAD axis upon nutrient restriction.

J Virol

January 2025

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies.

View Article and Find Full Text PDF

Unlabelled: Soil microbial communities play crucial roles in nutrient cycling and can help retain nitrogen in agricultural soils. Quantitative stable isotope probing (qSIP) is a useful method for investigating taxon-specific microbial growth and utilization of specific nutrients, such as nitrogen (N). Typically, qSIP is performed in a highly controlled lab setting, so the field relevance of lab qSIP studies remains unknown.

View Article and Find Full Text PDF

One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs.

View Article and Find Full Text PDF

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

Metformin (MET), a commonly prescribed medication for managing type 2 diabetes, has demonstrated various beneficial effects beyond its primary anti-diabetic efficacy. However, the mechanism underlying MET activity and its distribution within organelles remain largely unknown. In this study, we integrate multiple technologies, including chemical labeling, immunostaining, and high-resolution microscopy imaging, to visualize the accumulation of MET in organelles of cultured cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!