Regional patterns of genetic structure and environmental differentiation in willow populations ( Willd.) from Central Mexico.

Ecol Evol

Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México Morelia México.

Published: September 2019

Aim: To infer the geological and climatic factors that have shaped the genetic diversity and structure of a willow species () in three basins of Central Mexico.

Location: Central Mexico.

Methods: We collected samples from 11 populations across two hydrological basins (Balsas and Lerma) and one population from another basin (Ameca) within the Mexican Central Plateau (MCP). Individuals were analyzed using sequences of two chloroplast DNA (cpDNA) regions and eight nuclear simple sequence repeats (nSSR). Population genetic diversity and structure were determined from these data. To evaluate whether genetic structure was associated with ecological niche differentiation, we determined whether there is niche equivalence, overlap, or divergence between the Balsas and Lerma basins. Also, we evaluated the relative contributions of geographic distribution and climatic variation on population genetic structuring through redundancy analysis (RDA) and partial RDA.

Results: Both cpDNA and nSSRs data indicated the presence of three highly differentiated genetic groups, mostly geographically congruent with the three main hydrological basins. According to nSSRs, the three genetic groups can be further subdivided into eight subgroups corresponding to different rivers within the main basins. The niche equivalency test showed that the niches of the species in the Balsas and Lerma basins are significantly nonequivalent. The RDA indicated a significant association of genetic variation among populations with climate variables (particularly those related to the precipitation regime), while controlling for geographic distribution.

Main Conclusions: The genetic structure of is strongly associated with the historical and current geological configuration of the basins and the rivers within basins. The observed hierarchical genetic differentiation can be due to gene flow limitation resulting from physical barriers to the dispersal of , but also to some degree of isolation by environment, as suggested by the significant association between genetic variation among populations and precipitation regime.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745842PMC
http://dx.doi.org/10.1002/ece3.5475DOI Listing

Publication Analysis

Top Keywords

genetic structure
12
balsas lerma
12
genetic
11
genetic diversity
8
diversity structure
8
basins
8
hydrological basins
8
population genetic
8
structure associated
8
lerma basins
8

Similar Publications

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!