Transforming growth factor-β1 (TGFβ1) has been identified as a major pathogenic factor underlying the development of diabetic nephropathy (DN). However, the current strategy of antagonizing TGFβ1 has failed to demonstrate favorable outcomes in clinical trials. To identify a different therapeutic approach, we designed a mass spectrometry-based DNA-protein interaction screen to find transcriptional repressors that bind to the promoter and identified Yin Yang 1 (YY1) as a potent repressor of YY1 bound directly to promoter regions and repressed transcription in human renal mesangial cells. In mouse models, YY1 was elevated in mesangial cells during early diabetic renal lesions and decreased in later stages, and knockdown of renal YY1 aggravated, whereas overexpression of YY1 attenuated glomerulosclerosis. In addition, although their duration of diabetic course was comparable, patients with higher YY1 expression developed diabetic nephropathy more slowly compared to those who presented with lower YY1 expression. We found that a small molecule, eudesmin, suppressed TGFβ1 and other profibrotic factors by increasing YY1 expression in human renal mesangial cells and attenuated diabetic renal lesions in DN mouse models by increasing YY1 expression. These results suggest that YY1 is a potent transcriptional repressor of during the development of DN in diabetic mice and that small molecules targeting YY1 may serve as promising therapies for treating DN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scitranslmed.aaw2050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!