Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour.

J Exp Biol

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.

Published: September 2019

The study of fish escape responses has provided important insights into the accelerative motions and fast response times of these animals. In addition, the accessibility of the underlying neural circuits has made the escape response a fundamental model in neurobiology. Fish escape responses were originally viewed as highly stereotypic all-or-none behaviours. However, research on a wide variety of species has shown considerable taxon-specific and context-dependent variability in the kinematics and neural control of escape. In addition, escape-like motions have been reported: these resemble escape responses kinematically, but occur in situations that do not involve a response to a threatening stimulus. This Review focuses on the diversity of escape responses in fish by discussing recent work on: (1) the types of escape responses as defined by kinematic analysis (these include C- and S-starts, and single- versus double-bend responses); (2) the diversity of neuromuscular control; (3) the variability of escape responses in terms of behaviour and kinematics within the context of predator-prey interactions; and (4) the main escape-like motions observed in various species. Here, we aim to integrate recent knowledge on escape responses and highlight rich areas for research. Rapidly developing approaches for studying the kinematics of swimming motion both in the lab and within the natural environment provide new avenues for research on these critical and common behaviours.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.166009DOI Listing

Publication Analysis

Top Keywords

escape responses
32
escape
10
responses fish
8
fish escape
8
responses
8
escape-like motions
8
fish
4
fish review
4
review diversity
4
diversity motor
4

Similar Publications

The olfactory sensory system plays vital roles in daily activities, such as locating mate partners, foraging, and risk avoidance. Natural enemies can locate their prey through characteristic volatiles. However, little is known about whether prey can recognize the volatiles of their predators and if this recognition can increase the efficiency of prey escaping from predators.

View Article and Find Full Text PDF

Identification of Immune Infiltration-Associated CC Motif Chemokine Ligands as Biomarkers and Targets for Colorectal Cancer Prevention and Immunotherapy.

Int J Mol Sci

January 2025

Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, School of Medicine, International Campus, Zhejiang University, Haining 314400, China.

Colorectal cancer (CRC) is the third most common cancer globally, with limited effective biomarkers and sensitive therapeutic targets. An increasing number of studies have highlighted the critical role of tumor microenvironment (TME) imbalances, particularly immune escape due to impaired chemokine-mediated trafficking, in tumorigenesis and progression. Notably, CC chemokines (CCLs) have been shown to either promote or inhibit angiogenesis, metastasis, and immune responses in tumors, thereby influencing cancer development and patient outcomes.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

Fc-binding nanodisc restores antiviral efficacy of antibodies with reduced neutralizing effects against evolving SARS-CoV-2 variants.

J Nanobiotechnology

January 2025

Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

Passive antibody therapies, typically administered via parenteral routes, have played a crucial role in the initial response to the COVID-19 pandemic. However, the ongoing evolution of SARS-CoV-2 has revealed significant limitations of this approach, primarily due to mutational escape and the inadequate delivery of antibodies to the upper respiratory tract. To overcome these challenges, we propose a novel prophylactic strategy involving the intranasal delivery of an antibody in combination with an Fc-binding nanodisc.

View Article and Find Full Text PDF

Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!