Background: Adulteration of diesel fuel by the addition of vegetable oil is a problem that touches several countries around the world and bypasses the complexity of the specifications regarding the automotive diesel fuel distinguishing between customs, fiscal, and commercial-environmental specifications. At an international level, the adoption of the same analysis methods is important for the harmonization processes and the fluidity of the market. In this context, we assist to the diffusion of the same fraud touching several countries or continents since the limit of the same methods are common to many specifications. For several European countries, the revenue lost as a result of this adulteration consists of billions of euros per year. This enormous amount of illicit money feeds organized criminal networks with huge social and environmental damages.
Objective: This work presents a GC method to quantify vegetable oils in the range of 0.2-7% (w/w) in adulterated diesel fuel, intended for use as motor fuel, with or without extraneous heavy mineral oil.
Methods: Our study was realized on 100 fraudulent samples collected by the Italian fiscal police in regular oil stations and by the Italian fiscal police and customs officers as a consequence of controls on trucks transporting, in suspicious circumstances, "oil" often declared "antistick and anticorrosion oil" or "protective oil." Conclusions and Highlights: High reliability of results, external validity, ease of replication, simple instrumentation, and sample preparation make this method well suited for a new "smart" protocol for diesel fuels analysis for customs, fiscal, and antifraud purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5740/jaoacint.19-0268 | DOI Listing |
J Hazard Mater
December 2024
College of Environment and Climate, Institute for Environmental and Climate Research, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, 51143, China.
Higher alkanes are a major class of intermediate volatile organic compounds (IVOCs) emitted by vehicles, which have been considered as important precursors of secondary organic aerosol (SOA) in urban area. Dynamometer experiments were conducted to characterize emissions from gasoline and diesel vehicles in China. Three types of higher alkanes, namely acyclic, cyclic, and bicyclic alkanes, were explicitly quantified through the novel proton transfer reaction time-of-flight mass spectrometer with NO ionization (NO PTR-ToF-MS) with time response of 1 second.
View Article and Find Full Text PDFPlants (Basel)
December 2024
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
Diesel spills and nuclides pollution cause global ecosystem and human health problems. The remediation of contaminated soil using woody plants has received considerable attention. Differences in plant species and sex can lead to differences in tolerance to various stressors.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, Level 5, 75 Montrose Street, Glasgow G11XJ, UK.
The resistance of 16 strains to diesel fuel was studied. The minimal inhibitory concentrations of diesel fuel against were 4.0-64.
View Article and Find Full Text PDFMolecules
December 2024
Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
One of the key challenges in environmental protection is the reclamation of soils degraded by organic pollutants. Effective revitalization of such soils can contribute to improving the climate and the quality of feed and food, mainly by eliminating harmful substances from the food chain and by cultivating plants for energy purposes. To this end, research was carried out using two sorbents, vermiculite and agrobasalt, to detoxify soils contaminated with diesel oil and unleaded gasoline, using maize as an energy crop.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2024
Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Considerable attention has recently been given to the contribution of the greenhouse gas (GHG) emissions of the healthcare sector to climate change. GHGs used in medical practice are regularly released into the atmosphere and contribute to elevations in global temperatures that produce detrimental effects on the environment and human health. Consequently, a comprehensive assessment of their global warming potential over 100 years (GWP) characteristics, and clinical uses, many of which have evaded scrutiny from policy makers due to their medical necessity, is needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!