Background: Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a promising candidate antigen for a blood-stage malaria vaccine. However, antigenic variation and diversity of PfAMA-1 are still major problems to design a universal malaria vaccine based on this antigen, especially against domain I (DI). Detail understanding of the PfAMA-1 gene polymorphism can provide useful information on this potential vaccine component. Here, general characteristics of genetic structure and the effect of natural selection of DIs among Bioko P. falciparum isolates were analysed.

Methods: 214 blood samples were collected from Bioko Island patients with P. falciparum malaria between 2011 and 2017. A fragment spanning DI of PfAMA-1 was amplified by nested polymerase chain reaction and sequenced. Polymorphic characteristics and the effect of natural selection were analysed using MEGA 5.0, DnaSP 6.0 and Popart programs. Genetic diversity in 576 global PfAMA-1 DIs were also analysed. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 program.

Results: 131 different haplotypes of PfAMA-1 were identified in 214 Bioko Island P. falciparum isolates. Most amino acid changes identified on Bioko Island were found in C1L. 32 amino acid changes identified in PfAMA-1 sequences from Bioko Island were found in predicted RBC-binding sites, B cell epitopes or IUR regions. Overall patterns of amino acid changes of Bioko PfAMA-1 DIs were similar to those in global PfAMA-1 isolates. Differential amino acid substitution frequencies were observed for samples from different geographical regions. Eight new amino acid changes of Bioko island isolates were also identified and their three-dimensional protein structural consequences were predicted. Evidence for natural selection and recombination event were observed in global isolates.

Conclusions: Patterns of nucleotide diversity and amino acid polymorphisms of Bioko Island isolates were similar to those of global PfAMA-1 DIs. Balancing natural selection across DIs might play a major role in generating genetic diversity in global isolates. Most amino acid changes in DIs occurred in predicted B-cell epitopes. Novel sites mapped on a three dimensional structure of PfAMA-1 showed that these regions were located at the corner. These results may provide significant value in the design of a malaria vaccine based on this antigen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751645PMC
http://dx.doi.org/10.1186/s12936-019-2948-yDOI Listing

Publication Analysis

Top Keywords

amino acid
32
bioko island
28
natural selection
20
acid changes
20
genetic diversity
12
malaria vaccine
12
global pfama-1
12
pfama-1 dis
12
pfama-1
11
bioko
9

Similar Publications

Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.

View Article and Find Full Text PDF

Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl Treatment Be the Answer?

Environ Sci Technol

January 2025

Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States.

Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.

View Article and Find Full Text PDF

Introduction: Japanese encephalitis virus (JEV) and Zika virus (ZIKV) are prevalent in over 80 countries or territories worldwide, causing hundreds of thousands of cases annually. But currently there is a lack of specific antiviral agents and effective vaccines.

Methods: In the present study, to identify human neutralizing monoclonal antibody (mAb) against JEV or/and ZIKV, we isolated ZIKV-E protein-binding B cells from the peripheral venous blood of a healthy volunteer who had received the JEV live-attenuated vaccine and performed 10× Genomics transcriptome sequencing and BCR sequencing analysis, we then obtained the V region amino acid sequences of a novel mAb LZY3412.

View Article and Find Full Text PDF

Microbial activity in the deep continental subsurface is difficult to measure due to low cell densities, low energy fluxes, cryptic elemental cycles and enigmatic metabolisms. Nonetheless, direct access to rare sample sites and sensitive laboratory measurements can be used to better understand the variables that govern microbial life underground. In this study, we sampled fluids from six boreholes at depths ranging from 244 m to 1,478 m below ground at the Sanford Underground Research Facility (SURF), a former goldmine in South Dakota, United States.

View Article and Find Full Text PDF

Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!