Background: This study develops a model-based myocardial T1 mapping technique with sparsity constraints which employs a single-shot inversion-recovery (IR) radial fast low angle shot (FLASH) cardiovascular magnetic resonance (CMR) acquisition. The method should offer high resolution, accuracy, precision and reproducibility.

Methods: The proposed reconstruction estimates myocardial parameter maps directly from undersampled k-space which is continuously measured by IR radial FLASH with a 4 s breathhold and retrospectively sorted based on a cardiac trigger signal. Joint sparsity constraints are imposed on the parameter maps to further improve T1 precision. Validations involved studies of an experimental phantom and 8 healthy adult subjects.

Results: In comparison to an IR spin-echo reference method, phantom experiments with T1 values ranging from 300 to 1500 ms revealed good accuracy and precision at simulated heart rates between 40 and 100 bpm. In vivo T1 maps achieved better precision and qualitatively better preservation of image features for the proposed method than a real-time CMR approach followed by pixelwise fitting. Apart from good inter-observer reproducibility (0.6% of the mean), in vivo results confirmed good intra-subject reproducibility (1.05% of the mean for intra-scan and 1.17, 1.51% of the means for the two inter-scans, respectively) of the proposed method.

Conclusion: Model-based reconstructions with sparsity constraints allow for single-shot myocardial T1 maps with high spatial resolution, accuracy, precision and reproducibility within a 4 s breathhold. Clinical trials are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751613PMC
http://dx.doi.org/10.1186/s12968-019-0570-3DOI Listing

Publication Analysis

Top Keywords

sparsity constraints
16
accuracy precision
12
model-based myocardial
8
myocardial mapping
8
single-shot inversion-recovery
8
inversion-recovery radial
8
radial flash
8
flash cardiovascular
8
cardiovascular magnetic
8
magnetic resonance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!