A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2D- and 3D-QSAR Modeling of Imidazole-Based Glutaminyl Cyclase Inhibitors. | LitMetric

2D- and 3D-QSAR Modeling of Imidazole-Based Glutaminyl Cyclase Inhibitors.

Curr Comput Aided Drug Des

Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

Published: October 2021

Background: Glutaminyl Cyclase (QC) is a novel target in the battle against Alzheimer's disease, a highly prevalent neurodegenerative disorder. QC inhibitors have the potential to be developed as therapeutically useful anti-Alzheimer's disease agents.

Methods: Linear and non-linear 2D-Quantitative Structure-Activity Relationship (QSAR) models were developed using Stepwise Multiple Linear Regression (S-MLR) and neural networks. Partial least squares (PLS) method was used to develop a 3D-QSAR model. Also, the developed models were used in virtual screening of the ZINC database to identify potential QC inhibitors.

Results: The 2D neural network model showed superior predictive ability, as demonstrated by the validation parameters R = 0.933, Q = 0.886 and R pred = 0.911. The 3D-QSAR model's steric and electrostatic fields' isocontour maps were visualized and revealed important structural requirements associated with good activity. The virtual screening identified six compounds as potentially active QC inhibitors with improved pharmacokinetic profiles.

Conclusion: The developed QSAR models can be used to predict the activity of compounds not yet synthesized and prioritized for their synthesis and biological evaluation. Also, potentially active QC inhibitors have been identified with attractive lead-like properties that can be used to develop anti- Alzheimer's disease agents.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573409915666190918150136DOI Listing

Publication Analysis

Top Keywords

glutaminyl cyclase
8
alzheimer's disease
8
qsar models
8
virtual screening
8
active inhibitors
8
2d- 3d-qsar
4
3d-qsar modeling
4
modeling imidazole-based
4
imidazole-based glutaminyl
4
inhibitors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!