To summarize the abnormal location of FLT3 caused by different glycosylation status which further leads to the distinguishing signaling pathways and discuss targeting on FLT3 glycosylation by drugs reported in recent literatures. We review FLT3 glycosylation in endoplasmic reticulum. The abnormal signal of mutant FLT3 with different glycosylation status is discussed. We also address potential FLT3 glycosylation-targeting strategies for the treatment. Inhibition of FLT3 mutant cells by drugs reported in recent literatures involves the influence of glycosylation of FLT3: 2-deoxy-D-glucose, Tunicamycin and Fluvastatin are reported to inhibit N-glycosylation of FLT3; Pim-1 inhibitors are proved to block the inhibition of Pim-1 on FLT3 Oglycosylation; HSP90 inhibitors and Tyrosine Kinase Inhibitors are shown to increase fully glycosylated form of FLT3. The FMS-like tyrosine kinase 3 (FLT3) gene expressed only in CD34+ progenitor cells in bone marrow is located on chromosome 13q12 encoding FLT3 protein. FLT3 is initially synthesized as a 110 KD protein, which glycosylated in the endoplasmic reticulum to a 130 KD immature protein rich in mannose, and further processed into a mature 160 KD protein in the Golgi apparatus, which could be transferred to the cell surface. Therapy targeting on FLT3 glycosylation is a promising direction for AML treatment. The abnormal location of FLT3 caused by different glycosylation status leads to the distinguishing signaling pathways. Targeting on FLT3 glycosylation may provide a new perspective for therapeutic strategies. ABCG2: ATP-binding cassette transporter breast cancer resistance protein; ATF: activating transcription factor; AML: acute myeloid leukemia; CHOP: CCAAT-enhancer-binding protein homologous protein; 2-DG: 2-deoxy-D-glucose; EFS: event free survival; EPO: erythropoietin; EPOR: erythropoietin receptor; ERS: endoplasmic reticulum stress; FLT3: FMS-like tyrosine kinase 3; GPI: glycosylphosphatidylinositol; HSP: heat shock protein; ITD: internal tandem duplication; IRE1a: inositol-requiring enzyme 1 alpha; JNK: c-Jun N-terminal kinase; JMD: juxtamembrane domain; JAK: janus kinase; MAPK/ERK: mitogen activated protein kinase/extracellular signal-regulated protein kinase; OS: overall survival; PI3K/AKT: phosphatidylinositide 3-kinases/protein kinase B; PERK: RNA-activated protein kinase-like endoplasmic reticulum kinase; Pgp: P-glycoprotein; PTX3: human pentraxin-3; STAT: signal transducer and activator of transcriptions; TKD: tyrosine-kinase domain; TKI: tyrosine kinase inhibitor; TM: Tunicamycin; UPR: unfolded protein reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/16078454.2019.1666219 | DOI Listing |
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase expressed in hematopoietic cells. Internal-tandem duplication domain (ITD) mutation and tyrosine kinase domain (TKD) mutation are the two most common mutations in acute myeloid leukemia (AML). Post-translational modifications (PTMs) of FLT3, such as glycosylation and ubiquitination, have been shown to impact various aspects of the protein in both wild-type (WT) and mutant forms of FLT3.
View Article and Find Full Text PDFCancers (Basel)
April 2023
Centro de Investigación Médica Aplicada (CIMA), University of Navarra, 31008 Pamplona, Spain.
The in-frame internal tandem duplication (ITD) of the FLT3 gene is an important negative prognostic factor in acute myeloid leukemia (AML). FLT3-ITD is constitutive active and partially retained in the endoplasmic reticulum (ER). Recent reports show that 3'UTRs function as scaffolds that can regulate the localization of plasma membrane proteins by recruiting the HuR-interacting protein SET to the site of translation.
View Article and Find Full Text PDFCells
November 2021
Klinik für Innere Medizin II, Abteilung Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany.
Objectives: Internal tandem duplications (ITDs) of the Fms-like tyrosine kinase 3 (FLT3) represent the most frequent molecular aberrations in acute myeloid leukemia (AML) and are associated with an inferior prognosis. The pattern of downstream activation by this constitutively activated receptor tyrosine kinase is influenced by the localization of FLT3-ITD depending on its glycosylation status. Different pharmacological approaches can affect FLT3-ITD-driven oncogenic pathways by the modulation of FLT3-ITD localization.
View Article and Find Full Text PDFFASEB J
February 2020
Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
Fms-like tyrosine kinase 3 (FLT3) is a glycoprotein, that is a member of the class III receptor tyrosine kinase family. Approximately one-third of acute myeloid leukemia (AML) patients have mutations of this gene, and activation of the FLT3 downstream pathway plays an important role in both normal and malignant hematopoiesis. However, the role of N-glycosylation for FLT3 activation remains unclear.
View Article and Find Full Text PDFLeuk Res Rep
November 2019
Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan.
This review describes the effects of FLT3 mutations that alter its intracellular localization and modify its glycosylation, leading to differences in downstream signaling pathways. The most common type of FLT3 mutation, internal tandem duplication (FLT3-ITD), leads to localization in the endoplasmic reticulum and constitutive strong activation of STAT5. In contrast, the ligand-activated FLT3-wild type is mainly expressed on the cell surface and activates MAP kinases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!