Synergistic Enhancement Effect for Boosting Raman Detection Sensitivity of Antibiotics.

ACS Sens

The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry , Shanghai Normal University, Shanghai 200234 , P. R. China.

Published: November 2019

In this paper, a two-step method is used to prepare a regenerative three-dimensional (3D) ZnO/Ag@Au substrate for developing a superior sensitive surface enhanced Raman scattering (SERS) method for detecting antibiotics. A great electromagnetic enhancement is observed from the as-prepared composite substrate, which is triggered by tuning the electron distribution of metals and semiconductor metal oxide. The strong interaction between target sample and the huge surface area of ZnO/Ag@Au composite promotes the charge transfer to produce promising chemical enhancement. The synergistic physical and chemical enhancement mechanisms are validated by density functional theory and finite difference time domain simulation. Additionally, the presence of light "echo effect" in the 3D structure of ZnO support could also amplify the efficiency of light excitation for Raman scattering. The above-stated merits benefit to boost the Raman scattering detection sensitivity for real samples. The ZnO/Ag@Au-based SERS substrate could detect rhodamine 6G molecules with an enhancement factor of up to 1.48 × 10 and the lowest detectable concentration of 10 M. As a real application, antibiotics sulfapyridine in milk is determined by using the proposed SERS protocol, and the limit of detection at 1 × 10 M could be reached. As a prospective, the ZnO/Ag@Au-based SERS method would be extended for food safety and biomedicine analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.9b01436DOI Listing

Publication Analysis

Top Keywords

raman scattering
12
detection sensitivity
8
sers method
8
chemical enhancement
8
zno/ag@au-based sers
8
synergistic enhancement
4
enhancement boosting
4
raman
4
boosting raman
4
raman detection
4

Similar Publications

Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.

View Article and Find Full Text PDF

In this work, we investigated individual bacteria belonging to strains of the Beijing family with different drug sensitivity (sensitive, multi and extensive drug-resistant) by surface-enhanced Raman spectroscopy (SERS) in the fingerprint region. The latter is focused on the spectral bands, which correspond to a set of glutathione bands and DNA methylation patterns revealed due to 5-methylcytosine spectral biomarkers. It is shown that these spectral features can be correlated with drug sensitivity and DNA methylation.

View Article and Find Full Text PDF

Biocompatible Lyotropic Nanocarriers for Improved Delivery of Ascorbyl Tetraisopalmitate in Skincare.

Langmuir

January 2025

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.

Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.

View Article and Find Full Text PDF

The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.

View Article and Find Full Text PDF

Near-Field Mixing in a Coaxial Dual Swirled Injector.

Flow Turbul Combust

November 2024

Institut de Mécanique des Fluides de Toulouse, IMFT, CNRS, Université de Toulouse, Toulouse, France.

Improving mixing between two coaxial swirled jets is a subject of interest for the development of next generations of fuel injectors. This is particularly crucial for hydrogen injectors, where the separate introduction of fuel and oxidizer is preferred to mitigate the risk of flashback. Raman scattering is used to measure the mean compositions and to examine how mixing between fuel and air streams evolves along the axial direction in the near-field of the injector outlet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!