A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Container-Attachable Inertial Sensor for Real-Time Hydration Tracking. | LitMetric

A Container-Attachable Inertial Sensor for Real-Time Hydration Tracking.

Sensors (Basel)

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.

Published: September 2019

Various sensors have been proposed to address the negative health ramifications of inadequate fluid consumption. Amongst these solutions, motion-based sensors estimate fluid intake using the characteristics of drinking kinematics. This sensing approach is complicated due to the mutual influence of both the drink volume and the current fill level on the resulting motion pattern, along with differences in biomechanics across individuals. While motion-based strategies are a promising approach due to the proliferation of inertial sensors, previous studies have been characterized by limited accuracy and substantial variability in performance across subjects. This research seeks to address these limitations for a container-attachable triaxial accelerometer sensor. Drink volume is computed using support vector machine regression models with hand-engineered features describing the container's estimated inclination. Results are presented for a large-scale data collection consisting of 1908 drinks consumed from a refillable bottle by 84 individuals. Per-drink mean absolute percentage error is reduced by 11.05% versus previous state-of-the-art results for a single wrist-wearable inertial measurement unit (IMU) sensor assessed using a similar experimental protocol. Estimates of aggregate consumption are also improved versus previously reported results for an attachable sensor architecture. An alternative tracking approach using the fill level from which a drink is consumed is also explored herein. Fill level regression models are shown to exhibit improved accuracy and reduced inter-subject variability versus volume estimators. A technique for segmenting the entire drink motion sequence into transport and sip phases is also assessed, along with a multi-target framework for addressing the known interdependence of volume and fill level on the resulting drink motion signature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767290PMC
http://dx.doi.org/10.3390/s19184008DOI Listing

Publication Analysis

Top Keywords

fill level
16
drink volume
8
regression models
8
level drink
8
drink motion
8
drink
5
container-attachable inertial
4
sensor
4
inertial sensor
4
sensor real-time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!